## LOW ENERGY ELECTRON DIFFRACTION (LEED)Clinton Davisson obtained the Nobel prize in 1937 for confirming de Broglie's prediction that electrons behave as waves. (Louis De Broglie was awarded a Nobel Prize for this theory in 1929). Davisson and Germer were doing experiments at Bell Labs in 1925, when the vacuum in their apparatus was lost ruining their Ni sample. When heating the sample to use it again they involuntarily made large crystals. Low energy electrons scattered off these crystals produced diffraction patterns demonstrating that electrons behaved like waves. The de Broglie wavelength of an electron is: where as r Aexp(i),
where k·rA is its amplitude.
In terms of the electron energy: Electron diffraction can be seen in a simple form in scattering from two atoms
separated by a distance
The wave scatters from the two centers. There will be constructive interference when
the path difference, When the scattering of the electrons is from a Therefore if one observes only electrons which are reflected from a crystal surface without any energy loss, one will find diffraction from the two dimensional ordered array of atoms at the surface and not from the three dimensional atomic array in the bulk of the material. In the reflection from a surface plane, the momentum of the electron perpendicular to
the surface is not conserved. The momentum perpendicular to the surface is conserved
within a reciprocal lattice vector
There are two main used of LEED: 1) quick determination of the crystallinity of the surface by observing the spots produced by the diffracted electron beams on a phosphor screen. Analysis of spot pattern serves to determine symmetry of substrate surface and adsorbates, reconstruction, etc. 2) elaborate determination of positions of surface and surface atoms from measurements of spot intensity and additional computer modeling. The difficulty in these calculations, compared to the case of X-ray diffraction, is that scattering of electrons by atoms is strong. Thus kinematic theory is insufficient, dynamic theory needed. LEED measurements involve a low energy electron gun (a typical electron energy is 100 eV, a set of concentric spherical-sector grids (the "LEED optics"), and a phosphor screen, which emits light when struck by an energetic electron. The first gird is at the sample potential to have a field-free region in front of the sample thus avoiding changes in the angle of the trajectories of the backscattered electrons. Grids biased just below the voltage of the electron source is used to reject inelastically scattered electrons. The electrons are post-accelerated into the phosphor screen by a voltage of several kilovolts, to cause efficient luminescence. A grounded grid is placed between the grid and the energy analysis grids to avoid penetration of the field.
The next figures shows schematic LEED patterns at 100 eV for
Si[111]1x1 (top) and Si[111]Ö3xÖ3-30
In this diagram, the spots (beams) labeled from a to f are 1/3 1/3, 2/3 2/3, 1/3 4/3, 4/3 1/3, 2/3 5/3, and 5/3 2/3 respectively. The solid and dashed lines indicate the reciprocal nets for the ideal solid and the surface superstructure. ## EWALD CONSTRUCTIONThis is a method to obtain the spot patterns. It uses the reciprocal lattice (Fourier transform of the real surface lattice). 1) draw incident k 2) draw Ewald sphere of radius |k| with center at start of vector k 3) Draw rods from reciprocal lattice positions, perpendicular to surface 4) Find the diffracted beams starting at the start of ko and ending at any point where Ewald sphere intersects a rod. Discard beams moving towards surface. The observation of the pattern of the beam spots (intersection of the diffracted beam with the phosphor screen) serves to determineknow the symmetry of the surface structure. ## Surface structure from I-V curvesThis method involves measurements of the intensity of the diffracted beams as a function of energy for different spots and fitting them with calculations based on the assumed surface model. The steps involved in the analysis are: - Assume structure
- Choose electron-atom interaction potentials (they can be measured for
*free*atoms in the gas phase from scattering experiments, but one actually needs potentials for atoms in the solid state.) - Choose the electron-surface interaction potential and the depth of the inner potential (typically about 10 eV.) The inner potential is the gain in kinetic energy of the electron as it enters the solid.
- Calculate cross sections / phase shifts
- Calculate the intensities of the diffracted beam in a multiple scattering model.
- Compare with experiments. Go back to step 1 if needed.
More information can be found in the LEED I(V) data repository and the surface structure site at SUNY-Stony Brook. ## REFLECTION HIGH-ENERGY ELECTRON DIFFRACTION (RHEED) RHEED## Ewald ConstructionSampling depth is electron attenuation length x sin a.
## RHEED OscillationsRHEED is used typically to monitor growth of atomic layers during MBE (Molecular beam epitaxy), by measuring the oscillations of RHEED specular intensities. Defects scatter electrons off the specular direction producing a drop in the intensity. As growth continues, the number of steps on the surface increases and the intensity is damped. A method of MBE is to find growth conditions that will give minimum damping. More class notes on LEED can be found here. Updated September 14, 2000 |

Copyright 2002, by Raúl Baragiola, University of Virginia. All rights reserved. |