An air plasma spray process has been used to apply a model tri-layer Yb$_2$SiO$_5$/Al$_6$Si$_2$O$_{13}$/Si environmental barrier coating system on SiC test coupons. Significant differences in the thermal expansion of the component layers resulted in periodically spaced mud cracks in the Yb$_2$SiO$_5$ and Al$_6$Si$_2$O$_{13}$ layers. Upon thermal cycling between 1316°C and 110°C in a 90% H$_2$O/10% O$_2$ environment flowing at 4.4 cm/s, it was found that partial delamination occurred with the fracture plane located within a thermally grown oxide (TGO) at the Al$_6$Si$_2$O$_{13}$–Si interface. Delamination initiated at test coupon edges where the gaseous environment preferentially oxidized the exposed Si bond coat to form β-cristobalite. Simultaneously ingress of the gaseous environment through mud cracks initiated local formation of β-cristobalite (SiO$_2$), the thickness of which was greatest directly below mud cracks. Upon cooling, cristobalite transformed from the β to α phase with a large, constrained volume contraction that resulted in severe microfracture of the TGO. Continued thermal cycling eventually propagated delamination cracks and caused partial spallation of the coatings. Formation of the cristobalite TGO appears to be the delamination life-determining factor in protective coating systems utilizing a Si bond coat.

I. Introduction

Efforts to improve the fuel efficiency of aero-gas turbine engines are driving increases in gas path temperature throughout the engine. Planed increases to the gas temperature in the high-pressure turbine section of engines will require new generations of propulsion materials whose use temperatures exceed the capabilities of current, internally cooled (and thermal barrier coating protected) superalloy structures. Ceramic matrix composites are the favored structures. Ceramic matrix composites are the favored replacement since they have greater fracture resistance than monolithic ceramics. Those based on SiC fibers coated with BN to create weak interfaces with SiC matrices (resulting in a rising R curve toughening response) appear the most promising.

While SiC$_f$/SiC$_m$ composites provide the high-temperature mechanical properties needed for engine applications, they suffer from rapid recession as well as embrittlement and peeling in the high-pressure gas turbine environment. Recession originates from water vapor volatilization of the normally protective silica scale and embrittlement compromises the mechanical performance. Environmental barrier coatings (EBCs) that inhibit oxidizer reaction with the SiC component are therefore a critical issue for future engine development.

Numerous EBC concepts have been proposed, but recent reviews have shown many systems suffer from a variety of deficiencies. A tri-layer coating consisting of a Si bond coat, an Al$_6$Si$_2$O$_{13}$ intermediate layer, and a low steam volatility rare-earth (RE) silicate topcoat has been investigated as a promising system. The Si bond coat applied to the SiC substrate serves as a cation reservoir to prevent oxidation and volatilization of SiC. An alumino-silicate (3:2 mullite-Al$_6$Si$_2$O$_{13}$) layer above the bond coat is used to impede the diffusion of oxidizers to the bond coat. This two-layer system is then protected from volatilization by a RE silicate topcoat which has low volatility. The use of an intermediate Al$_6$Si$_2$O$_{13}$ layer is also thought to inhibit reactions between silicon and rare-earth silicates.

This tri-layer RE coating architecture was first proposed in the mid 2000s and a variant using a Yb$_2$SiO$_5$ topcoat has been recently deposited using air plasma spray (APS) techniques. While Yb$_2$SiO$_5$ has a very high silicon volatility resistance, it has a relatively high coefficient of thermal expansion (CTE) compared to that of the Si bond coat and SiC substrate. The difference in CTE causes mud cracking of the coating, with cracks terminating at the Si bond coat. Nonetheless, the Yb$_2$SiO$_5$/Al$_6$Si$_2$O$_{13}$/Si system has been proposed as one of the most promising among the tri-layer RE silicate systems due to its thermochemical stability at high temperatures, the stability of Yb$_2$SiO$_5$ in a steam environment, and reported adherence and durability during steam cycling.

While the thermochemical compatibility and stability of numerous EBC concepts have been studied extensively, there have been no published reports analyzing the thermomechanical damage mechanisms experienced during steam cycling of thermochemically stable plasma-sprayed RE silicate EBC systems. Here, a steam cycling study has been performed for a tri-layer Yb$_2$SiO$_5$/Al$_6$Si$_2$O$_{13}$/Si (ytterbium monosilicate/mullite/silicon) system whose APS deposition and coating microstructure have been recently described, and the evolution of damage and mechanisms of failure during steam cycling are investigated.

II. Experimental Procedure

(1) Coating Deposition

Three-layer Yb$_2$SiO$_5$/Al$_6$Si$_2$O$_{13}$/Si coatings were deposited onto (grit blast) roughened 25.4 mm × 12.7 mm × 3.2 mm α-SiC Hexoloy® (Saint Gobain Ceramics, Niagara Falls, NY) substrates using an APS deposition approach described by Richards and Wadley. The Si layer was deposited with the substrate at ambient temperature. The Al$_6$Si$_2$O$_{13}$ and then Yb$_2$SiO$_5$ layers were deposited on the Si-coated substrates in a furnace held at 1200°C. The structure of the coated samples is schematically illustrated in Fig. 1.
one surface of the substrate was coated, and the side edges were slightly over-sprayed. A 2 mm-wide strip of the sample surface was left uncoated due to the fixture used for deposition. The nominal thickness of the Yb$_2$SiO$_5$ and Al$_6$Si$_2$O$_13$ layers was 75 μm, whereas that of the Si bond coat was 100 μm. However, considerable variability in layer thickness was observed within and between specimens due to fluctuation of the powder particle feed rate and variation in particle temperature during propagation within the plasma plume over the long spray distance.

(2) Steam Furnace Cycling
After deposition, the coated samples were “stabilization” annealed at 1300°C in laboratory air for 20 h, consistent with prior EBC testing. They were then thermally cycled in a steam cycling furnace in a flowing, atmospheric pressure, 90% H$_2$O/10% O$_2$ gas environment with a flow velocity of 4.4 cm/s (volumetric flow rate of 4.1 slm), Fig. 2. When the steam furnace was in its raised (cold) configuration, the gas temperature at the sample location was 110°C (thereby avoiding steam condensation). In the hot configuration, the sample temperature was measured to be 1316°C by reference thermocouple. These testing conditions are similar to those used in prior EBC research and approximate the H$_2$O partial pressure during lean combustion at a pressure of ~10 atm. The samples were examined visually before testing, after 50, 100 and then every 100 cycles thereafter to determine sample failure defined as coating spallation on any part of the test sample.

(3) Coating Characterization
The steam cycled samples were sectioned and polished, and examined with a scanning electron microscope (Quanta 650 FE-SEM; FEI, Hillsboro, OR) operating in the backscattered electron (BSE) mode. Images are collected under low-vacuum conditions. A gamma correction was applied to images to enable simultaneous visualization of Yb and non-Yb containing materials. Elemental mapping by Energy Dispersive Spectroscopy (EDS-X-Max 38 150 SDD, Oxford Instruments, Concord, MA) was also used. The EDS spectra were captured using a 20 kV accelerating voltage to identify Yb by its L lines and were not standardized.

Raman Spectroscopy was performed using an inVia (Renishaw, Hoffman Estates, IL) microscope to identify bond coat oxidation phases and reaction products in steam cycled coatings. The Raman analyses were performed using a 50× lens with a numerical aperture of 0.5. An argon-ion laser (wavelength of 488 nm) was used for incident illumination of the sample. Approximately 99% of the Gaussian distributed incident light of the source resided within a 1 μm diameter circle, resulting in a spatial resolution of approximately 1 μm.

(4) Thermomechanical Analysis
Thermomechanical analyses of stress states and strain energy release rates (ERR) for debonding of the elastic coating layers were calculated using the LayerSlayer38 software package. All strain ERR calculations presented are for a system whose layers remained elastic throughout cooling, under the assumption that all layers are in their stress-free state at the annealing temperature of 1300°C. The calculation ignores stress relief by mechanisms such as mud cracking or creep. The thermophysical properties and residual stresses calculated for this elastic coating—substrate system after cooling from the stabilization (stress free) annealing temperature of 1300°C are summarized in Table I and agree well with previous estimates.$^{31,39,40,40-49}$

III. Results
Eight substrates had coatings deposited upon them. One sample was used for as-deposited and annealed microstructural
analysis, one sample delaminated upon cooling from deposition and a second delaminated upon cooling from annealing. Both delamination types were investigated by SEM and found to have occurred at the Si–SiC interface.

The remaining five coated samples were thermally cycled in the steam cycling apparatus shown in Fig. 2. Spallation failure was observed in the cycled coatings at 50, 200, 400 (2), and 600 cycles.

(1) Coating Structure

Figure 3 shows BSE mode SEM micrographs of a part of the coating–substrate system after stabilization annealing. The white arrows in Fig. 3(a) indicate the locations of mud cracks in the Yb₂SiO₅ layer. Many of these also penetrated the Al₆Si₂O₁₃ layer, Fig. 3(b) but were arrested near the Al₆Si₂O₁₃–Si interface, Fig. 3(c). Examination of the calculated residual stress states in the coated system, Table I, indicates that the higher CTE of the Yb₂SiO₅ (and to lesser extent the Al₆Si₂O₁₃) layer resulted in tensile residual stresses. The residual stresses have been bounded by performing the calculations using two sets of elastic moduli. The first used the elastic moduli typical of fully dense material, and resulted in high tensile stresses in the Yb₂SiO₅ and Al₆Si₂O₁₃ layers and a compressive stress in the Si bond coat. The second used 50% reduced elastic moduli to approximate the properties of the APS deposited Yb₂SiO₅ and Al₆Si₂O₁₃ layers. It also used an elastic modulus for the highly porous (calculated to be in the range of 20% porosity)²⁹ Si bond coat that was 1/10th that of the solid material. These reduced moduli are consistent with those experimentally observed for APS materials of comparable porosity.³⁰–³⁸ They resulted in lower tensile stresses in the Yb₂SiO₅ and Al₆Si₂O₁₃ layers and a substantially smaller compressive stress in the Si bond coat. In either case, the calculated stresses are consistent with the mud cracking observed. The average mud crack spacing was found to be ~280 µm, consistent with prior work.³¹

The light and dark contrast features evident in the Yb₂SiO₅ coating layer, Fig. 3, are a manifestation of silicon evaporation from some of the (originally stoichiometric composition) powder particles during APS processing.³¹ The lighter contrast regions correspond to solidified particles

Table I. Thermophysical Properties of EBC System Components

<table>
<thead>
<tr>
<th>Material</th>
<th>CTE (×10⁶ °C⁻¹)</th>
<th>Young’s modulus (GPa)</th>
<th>Poisson ratio ν</th>
<th>Thermal stress (MPa)†</th>
<th>Layer thickness</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yb₂SiO₅</td>
<td>7.5³¹</td>
<td>172³¹</td>
<td>0.27³</td>
<td>840</td>
<td>75 µm</td>
<td>Topcoat</td>
</tr>
<tr>
<td>EAPS</td>
<td>5.3⁴¹</td>
<td>220⁴²</td>
<td>0.28⁴³</td>
<td>215</td>
<td>75 µm</td>
<td>Diffusion barrier</td>
</tr>
<tr>
<td>Mullite</td>
<td>86</td>
<td>425</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E APS</td>
<td>110</td>
<td>425</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cristobalite-α</td>
<td>30²</td>
<td>65⁴⁴</td>
<td>-0.164⁴⁶</td>
<td>4350</td>
<td>0–150 µm</td>
<td>Oxidation product</td>
</tr>
<tr>
<td>Cristobalite-β</td>
<td>3.1⁴⁹</td>
<td>70³</td>
<td>-0.042⁴⁸</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>4.1⁴²</td>
<td>163⁴⁹</td>
<td>0.223⁴⁹</td>
<td>-180</td>
<td>100 µm</td>
<td>Bond coat</td>
</tr>
<tr>
<td>SiC (α)</td>
<td>4.67</td>
<td>430</td>
<td>0.14</td>
<td>-55</td>
<td>3.2 mm</td>
<td>Substrate</td>
</tr>
</tbody>
</table>

†Calculated at 20°C after cooling from stress free condition at 1300°C with LayerSlayer.

Assumed 50% reduction in elastic modulus for APS Yb₂SiO₅ and Al₆Si₂O₁₃, and 90% reduced elastic modulus for porous APS Si.

Based on Y₂Si₂O₇.³⁹

Average of values reported on the 20°C–200°C interval.⁴⁴,⁴⁵

Based on Young’s modulus ratio of α and β quartz⁶⁰ and α cristobalite.

![Fig. 3.](image-url) (a) Low magnification BSE mode SEM image of the 1300°C annealed EBC with mud cracks indicated by arrows. (b) Shows a higher magnification view of the coating in a region where a mud crack penetrated the ytterbium monosilicate and mullite layers. (c) A high magnification view of the dashed box area in (b) showing arrest of the mud crack at the mullite–silicon bond coat interface.
containing a lower silicon fraction. During their solidification, this resulted in the formation of a two-phase Yb$_2$SiO$_5$ + Yb$_2$O$_3$ solidified splat. It is worth noting that since the CTE and elastic modulus of Yb$_2$SiO$_5$ and Yb$_2$O$_3$ are similar, such silicon loss is not anticipated to significantly affect the thermomechanical response of the topcoat.

Figure 3(a) shows that significant variability in the thickness of the coating layers (especially the top two layers) resulted from the spray process implemented here. It can also be seen that the Yb$_2$SiO$_5$ and Al$_6$Si$_2$O$_13$ layers failed to fully cover the Si bond coat at the coating edge, despite intentional overspray. While this could generally be resolved by changing the angle of deposition of these two layers, the high-temperature furnace prevented spraying at an angle.

During the spray deposition process, the temperature and size of the silicon droplets that impacted the SiC substrate varied considerably. This resulted in a porous Si bond coat and significant variability in the adhesion of the interface between the grit blasted SiC and the Si bond coat. Figure 4 shows BSE micrographs of the Si bond coat—SiC interface at two different locations in an annealed sample. In some regions of the interface, Fig. 4(a), silica formation and substantial porosity were observed. The silica formation resulted from oxygen entrainment in the plasma and reaction during the long standoff spray deposition, and penetration through interconnected pore paths in deposited coatings during annealing. The concentration of these defects varied greatly within specimens. Figure 4(b) shows an interface from a region where these defects were much less prevalent. Those specimens that spalled before steam cycling were found to have spalled at the Si–SiC interface, from regions containing these defects identified in Fig. 4.

(2) **Steam Cycling Response**

The samples that had very short delamination lifetimes (<200 steam cycles) all delaminated at the Si–SiC interface. Figure 5(a) shows a photograph of a coated substrate that had the shortest delamination lifetime (less than 50 steam cycles). A photograph taken after its delamination failure is shown in Fig. 5(b). It is evident that failure began at the left edge of the sample and progressed inward toward the center of the coating. Figure 5(c) shows a cross-sectional image taken near the side of the sample at the location indicated by a red vertical bar in Fig. 5(b). While the coating remained adherent, it was clear that delamination had initiated at the Si–SiC interface. The crack opening displacement at the edge of the sample indicates the presence of a bending moment on the coating that is consistent with the higher CTE of layers further from the mid-plane of the coating.

Delamination after a few steam cycles (and immediately after deposition and cooling from annealing) appears to be a consequence of the large thermal residual stress in the coating system (as outlined in Table I) acting in combination with insufficient Si–SiC interfacial adhesion. This is consistent with deposition conditions for these samples that resulted in interface sections such as that shown in Fig. 4(a). No delamination of this character was evident in coatings with a steam cycling lifetime in excess of 200 steam cycles.

An example of the failure mode of the sample that was most delamination resistant (600 steam cycles to failure) is shown in Fig. 6. This figure shows cross-sectional BSE images of the coating at various distances from the edge of the sample. Examination of these serial coating sections indicates that coating damage occurred at the Al$_6$Si$_2$O$_13$–Si interface and was greatest near the coating edges. Fig. 6(a). A very thick porous and cracked TGO layer had formed on the Si bond coat. The TGO layer thickness increased toward the sides of the coating, and had microcracked and suffered a mixture of thermomechanical and environmental damage leaving large, interconnected voids at the Al$_6$Si$_2$O$_13$–Si interface. This damage decreased toward the interior of the sample, Figs. 8(b) and (c). Figure 8(c), near the center of the coating, shows that cavities had been created in the TGO at the base of mud cracks. Analysis of many sample sections indicated that such cavities were present at the bottom of all mud cracks. They were extended horizontally along the Al$_6$Si$_2$O$_13$–TGO interface, and had the greatest thickness of TGO below them. The cavity edges appeared sharp and were connected with crack network within the TGO layer.

A higher magnification image of the TGO region is compared with EDS mapping in Fig. 7. It is apparent that the microfracture was contained within the TGO scale that
grew on the Si bond coat at the original Al$_6$Si$_2$O$_{13}$–Si interface. Semiquantitative EDS point analyses of the TGO indicated that it contained only Si and O with a composition consistent with SiO$_2$. In addition to the formation of the TGO, considerable internal oxidation of the Si bond coat is evident. This is consistent with an interconnected (open) pore structure whose interior surfaces were oxidized during annealing and subsequent steam cycling.

The TGO has been analyzed using Raman spectroscopy, and the ambient temperature phase identified to be α (low) cristobalite based on the presence of spectral peaks with wave numbers of 230 and 416 cm$^{-1}$. The presence of the silicon peak at a wave number of 520 cm$^{-1}$ indicates that Si–Si bonding was sampled by the probe. The observed intensity of this peak is very low compared to the intensity for pure silicon, and may be due to retained silicon in the oxide. Raman analyses across the width of the coating (Fig. 8) all indicated the TGO to be α cristobalite; no vitreous SiO$_2$ was detected. While this does not preclude the presence of vitreous silica, it indicates that if a vitreous phase existed its thickness was less than the ~1 μm diameter laser probe. The presence of α (low) cristobalite at ambient temperature implies that β (high) cristobalite was formed during high-temperature H$_2$O/O$_2$ exposure and then underwent a phase transformation to the α phase during cooling. Such a phase change typically commences at ~220°C during the cooling of β-cristobalite and is complete by ~200°C. The variation in background may result from the incorporation of hydroxyl groups within the silica.

Modest microstructural changes occurred within the Yb$_2$SiO$_5$ and Al$_6$Si$_2$O$_{13}$ layers during steam cycling. After 200 steam cycles equiaxed microcracking of the Yb$_2$SiO$_5$ phase in the topcoat was observed, Fig. 9(a). In the Al$_6$Si$_2$O$_{13}$ layer, increased precipitation of Al$_2$O$_3$ aggregates and coarsening into larger plates was observed, Fig. 9(b). No evidence of surface volatilization of silica was observed. Steam cycling of the coating system resulted in the formation of a reaction product between the Yb$_2$SiO$_5$ and Al$_6$Si$_2$O$_{13}$ layers, Fig. 10. The semiquantitative EDS-measured composition of this reaction product ranged between 11–12 at.% Yb, 11–20 at.% Al, 14–20 at.% Si, and 56–57 at.% O. Its thickness varied considerably and exceeded 5 μm in some locations. The varying Al and Si contents indicate that the compound has a broad phase field. No cracking of the reaction product was observed, but...
Porosity was present at the interface between the Yb–Al–Si–O reaction product and Al₂Si₂O₇ layer. Raman analyses of this reaction product, Fig. 11, indicated that it was crystalline and shared many of the atomic bonding configurations present in Yb₂SiO₅, though several additional peaks were also present in the spectra. Raman spectra of the Yb–Al–Si–O system are not published so this reaction product could not be identified by this method.

IV. Calculated Stress States and Energy Release Rates

The mechanical properties and calculated thermal residual stresses for the EBC system of Fig. 1 are presented in Table I. Some explanation is merited for the stress states and ERRs calculated for systems including cristobalite. It was assumed that oxidation grows a pure β cristobalite scale under stress free conditions at the steam cycling temperature of 1316°C. Upon cooling, strain is generated by the thermal contraction of the layers. Inelastic deformation during cooling is neglected, such that the present calculations correspond to an upper bound on the strain energy contained in the layers (and therefore on the ERR). At 220°C an inversion-type phase transformation occurs in cristobalite [i.e., β (high)]
Mechanisms of Ytterbium Monosilicate/Mullite/Silicon Coating Failure

V. Discussion

High-temperature APS deposition of a Yb₂SiO₅/Al₆Si₂O₁₃/Si tri-layer EBC on a SiC substrate results in the development of substantial stored elastic strain energy in the coating system after cooling. Figs. 12(a)–(f). It is noted that the ERR for delamination exceeds the toughness of oxide ceramics, which lie in the range 1–50 N/m (roughly equivalent to 0.1–10 MPa m¹/²). By comparing Figs. 12(a), (b), (d), and (e) it can be seen that the ERR for interface delamination increased considerably when cristobalite was present above the delaminating interface. Comparison of Figs. 12(b), (c), (e) (f) also show that the increase in ERR was strongly related to the effective modulus of the cracked TGO. The early delamination failures of coatings upon cooling are also consistent with a thermomechanical stress-driven failure mechanism at the Si–SiC interface, which initiated at the stress concentration present at the coating edge and acted in conjunction with insufficient adhesion at the Si–SiC interface.

It is noted again that the neglect of plastic flow (creep) during cooling implies that the ERR estimates are upper bounds. In addition, deformation mechanisms such as the observed channel (mud) cracking, microcracking of the TGO, and other microcracking would all considerably reduce the strain energy available to drive delamination cracking in the cooled state. Analysis of these effects is complicated, and has not been attempted. As shown in Fig. 12, the effect of reduced coating modulus (to account for porosity) and cristobalite modulus (to account for microcracking) on the ERR behavior has been subjected to preliminary investigation. The calculations indicate that the ERR scales approximately linearly with the coating layer modulus. These calculations also indicate that microcracking of the TGO considerably reduces the ERR for delamination.

In those coatings where the Si–SiC interface adhesion was sufficient to avoid early failure, coating delamination occurred by a combination of thermomechanical and environmental effects. A schematic illustration of the damage mechanisms is shown in Fig. 13. After the stabilization annealing treatment, the CTE mismatch between the coating layers and the substrate resulted in a large tensile residual stress in the Yb₂SiO₅ layer. A smaller tensile stress was also formed in the Al₆Si₂O₁₃ layer, Table I and Fig. 13(a). These stresses varied considerably based upon the elastic moduli used for their calculation, but were substantial in either case. The tensile stresses resulted in the formation of mud cracks, which were arrested upon encountering the Si bond coat. At ambient temperature, the faces of these mud cracks were quite widely separated in the Yb₂SiO₅ layer.

Upon heating to 1316°C in the steam cycling furnace, the primary damage mechanism became environmental: even though the mud crack opening displacement was greatly reduced by thermal expansion, the gaseous environment permeated the mud crack network and began to oxidize the Si bond coat, forming a β-cristobalite TGO at the root of the mud cracks, Fig. 13(b). Cristobalite has previously been observed in silica scales formed above 1200°C during exposure to H₂O, with a prevalence that increases with temperature and H₂O concentration. Some volatilization may also occur through the reaction of silica with water vapor but this will be inhibited by the need for diffusive transport of H₂O and Si(OH)₄ through the crack network between the TGO and the external environment.
Upon cooling, Fig. 13(c), the CTE mismatch-derived residual stresses began to develop and the mud cracks began to re-open. Significant bending moments are expected (based on elastic analyses) because the CTE of coating layers decreased progressively from the topcoat down. As the TGO grown on the bond coat thickened with increasing high-temperature exposure time, the available driving force for mechanical damage rapidly became dominated by the release of strain energy in the TGO, as indicated in Fig. 12. During cooling, the thermally grown cristobalite transformed to the α-phase at around 220°C with a volume reduction of ~4.5%. This volume change was constrained by adhesion to the surrounding layers, resulting in microcracking of the TGO. During the next heating cycle, the TGO microcrack network provided a fast diffusion path for O2 and steam to reach un-oxidized Si, increasing the oxidation rate. Repeated thermal cycling resulted in rapid growth of the TGO and eventual linkage of the TGO regions emanated from each mud crack.

Delamination was initiated at the edge of the coatings, where the severity of the damage mechanisms shown in Figs. 13(a)–(c) was increased due to more severe environmental attack, Fig. 13(d). Even though attempts were made to wrap the Yb2SiO5 and Al6Si2O13 layers around the edge of the substrate, the Si bond coat was left unprotected at the sample edge. This resulted in rapid oxide growth both on and within the bond coat (the latter due to the presence of an interconnected pore network). Upon cooling, TGO microcracking commenced and this enabled more rapid oxidizer penetration and TGO formation during subsequent hot cycles. The large bending moment and substantial ERR that was developed upon cooling resulted in release of the coating segment between the edge and the first mud crack, with further cycling progressively extending this mode of coating delamination.

It is evident that the rapid delamination failure of the tri-layer coating system was controlled by the high diffusivity...
Three-layer \(\text{Yb}_2\text{Si}_5\text{O}_8/\text{Al}_6\text{Si}_2\text{O}_{13}/\text{Si} \) EBCs have been deposited onto SiC substrates using an APS approach. These coatings have been steam cycled to failure (defined as any observed delamination or any crack growth) in an atmospheric pressure, slowly flowing 90% \(\text{H}_2\text{O} \)/10% \(\text{O}_2 \) environment using 60 min hot \((1316\, ^\circ\text{C}) \) and 10 min cool \((110^\circ\text{C}) \) cycles. The coating lifetime was controlled by interactions between environmental degradation and mechanical damage resulting from thermal residual stresses and phase transformation. Specifically, it is found that:

1. Mud cracking of the as-deposited and annealed EBC was indicative of a thermomechanical incompatibility in the system. This led to the development of short circuit diffusion/volatilization paths through the water vapor protective layers of the EBC.
2. Oxygen and steam penetrate through the upper layers of the EBC and oxidize the Si bond coat. The dominant oxidizer access route appears to be through mud cracks and eroded channels in the TGO. The high testing temperature of \(1316^\circ\text{C} \) resulted in the formation of \(\beta \) (high) cristobalite as opposed to vitreous \(\text{SiO}_2 \).
3. Thermally grown cristobalite experiences a phase transformation upon cooling at around \(220^\circ\text{C} \) that is accompanied by considerable volumetric contraction. This caused severe fracturing of the TGO, and ultimately led to coating delamination. The formation of a cristobalite TGO was a major contributing factor to the poor steam cycling durability of this tri-layer EBC system.

Acknowledgments

We would like to acknowledge Bryan Harder, Dennis Fox, and Michael Cuy of the NASA Glenn Research Center for their assistance in depositing EBCs. The authors are indebted to Stephen Shefr (UCSB) and Foucault de Franqueville (Cachat) for help with the energy release rate calculations in this work. We thank Elizabeth Opila (UVA), Daming Zhu of NASA Glenn and Kang Lee from Rolls Royce (Indianapolis) for numerous helpful discussions. We would also like to thank Richard White (UVA) for advice concerning coating characterization. This work was supported in part by Rolls Royce (Indianapolis) and the Office of Naval Research under grants N00014-11-1-0917 (BTR and HNGW) and N00014-13-1-0859 (MRB) managed by Dr. David Shifler.

References

