STRUCTURAL RELATIONSHIPS BETWEEN THE T AND O PHASES IN Ti-24Al-11Nb

L.M. Hsiung and H.N.G. Wadley
Department of Materials Science and Engineering
University of Virginia
Charlottesville, VA 22903 USA

(Received January 23, 1992)
(Revised February 4, 1992)

Introduction

In an earlier study of phase evolution during aging of a rapidly solidified Ti-24Al-11Nb alloy, we discovered the existence of an ordered tetragonal (T) phase[1]. The T phase formed through a B2 -> T ordering transition, and can be regarded as a tetragonally distorted DO3-like phase formed by further ordering of Nb atoms in the B2 superlattice. Later, we reported on the metastability of the T phase; a sequential transition T -> O (ordered orthorhombic) -> α₂ (ordered hexagonal) phase was found to take place during aging[2]. To elucidate the mechanism of the T -> O transition, a study of the structural relationships between the T and O phases has been carried out using transmission electron microscopy (TEM) and electron diffraction methods. The results are presented here.

Experimental

A plasma-sprayed Ti₃Al+Nb alloy with a nominal composition of Ti-24at%Al-11at%Nb was chosen for this study. The sample was produced from powder through an inductively coupled plasma deposition (ICPD) process by GE Aircraft Engines, Lynn, MA[3]. During the ICPD process, titanium aluminide powder was melted by passing through a plasma. The molten droplets were immediately deposited onto a mandrel inside a vacuum chamber where they were rapidly quenched to a solid state. Before aging, specimens were wrapped with tantalum foils and sealed in cleaned and evacuated quartz ampoules. Isothermal aging was subsequently performed for different times at 650°C. The microstructure of the alloy was examined for its aged status using transmission electron microscopy (TEM), selected area diffraction (SAD), microdiffraction (MD) and convergent beam electron diffraction (CBED) methods in a Philips-400T transmission electron microscope.

Results and Discussion

Microstructure

A typical microstructure observed in a sample after aging for 40 min at 650°C is shown in Fig. 1(a). A lath-like O phase was found to coexist with the T phase. The T and O phases were distinguished using the dark-field (DF) imaging method as shown in Figs. 1(b) and 1(c). Figure 1(b) shows the matrix of the T phase. Figure 1(c) shows the lath-like O phase. Notice that two different orientation variants of the O lath can be found in Fig. 1(c). The T/O interface (habit) planes were found to be 44° away from (001)ₜ, i.e. parallel to (223)ₜ and (223)ₜ (Fig. 1(d)). Note that these are different from the {211}bcc habit plane found in an equilibrium bcc/orthorhombic Ti-Al-Nb system by Bendersky et al.[4]. A selected area
diffraction (SAD) pattern generated from the (T + O) two-phase region in Fig. 1(a) is shown in Fig. 2. The orientation relationships between the T and O phases derived from the SAD pattern are the following: (110)$_T$(001)$_O$ and (110)$_T$(010)$_O$ = (001)$_T$(100)$_O$ = 4.5°.

When the aging time was extended, the O phase was found to grow by consumption of the T phase. The morphology of the O phase eventually altered from a plate to an equiaxed grain (after aging for 2h at 650°C) as a result of phase coarsening. This is shown in Fig. 3(a). Microdiffraction and CBED whole patterns generated from the <001> zone of a coarsened O phase are shown in Fig. 3(b). A 2mm symmetry is displayed in the <001>$_O$ zone CBED pattern[5].

Structural relationships between the T and O phases

The lattice correspondence between the T and O phases can be derived in the manner shown in Fig. 4(a). Let a lattice vector $[x_1,x_2,x_3]_O$ in the O lattice correspond to a lattice vector $[x_1,x_2,x_3]_T$ in the T lattice. From the relative orientations of the two lattices (001)$_T$ -> (100)$_O$, (110)$_T$ -> (010)$_O$ and (110)$_T$ -> (001)$_O$, the relation between the $[x_1,x_2,x_3]_O$ and $[x_1,x_2,x_3]_T$ can be expressed as follows:

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{bmatrix}_O = \begin{bmatrix}
 0 & 0 & 2 \\
 -1 & 1 & 0 \\
 -1 & -1 & 0
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{bmatrix}_T
\]

(1)

Structural relationships between these two phases can be derived by assuming a shuffling of atoms on alternating (110)$_T$ planes along [110]$_T$, accompanied by homogeneous lattice deformations along the [001]$_T$, [110]$_T$ and [110]$_T$ directions. These are illustrated in Figs. 4(b) & 4(c).

An important aspect of the T -> O transition is the shape deformation P required to convert a tetragonal to an orthorhombic lattice. The shape deformation (P) must be consistent with the experimental observation that the habit (invariant strain) plane is essentially undistorted and unrotated. In practice, P is composed of a homogeneous lattice distortion B, a lattice-invariant inhomogeneous shear S (corresponding to slip and twinning), and a rigid-body rotation Q, i.e. $P = QB[6]$. The lattice dimensions of the O phase can be obtained by contracting the T lattice by 8.8% along [001]$_T$ to create [100]$_O$, expanding [110]$_T$ by 6.6% to create [010]$_O$, and expanding [110]$_T$ by 2% to create [001]$_O$. Referring to the directions [001]$_T$, [110]$_T$ and [110]$_T$ as x-, y-, z- axes, these can be expressed as follows:

\[
\begin{bmatrix}
 e_{11} & 0 & 0 \\
 0 & e_{22} & 0 \\
 0 & 0 & e_{33}
\end{bmatrix} = \begin{bmatrix}
 -0.088 & 0 & 0 \\
 0 & 0.066 & 0 \\
 0 & 0 & 0.02
\end{bmatrix}
\]

(2)

The principal strains, denoted by η_{ij} of the homogeneous distortion B for the T -> O transformation are given by:

\[
B = \begin{bmatrix}
 \eta_{11} & 0 & 0 \\
 0 & \eta_{22} & 0 \\
 0 & 0 & \eta_{33}
\end{bmatrix} = \begin{bmatrix}
 1+e_{11} & 0 & 0 \\
 0 & 1+e_{22} & 0 \\
 0 & 0 & 1+e_{33}
\end{bmatrix} = \begin{bmatrix}
 a_0c_T & 0 & 0 \\
 0 & b_0\sqrt{2}a_T & 0 \\
 0 & 0 & 2c_0\sqrt{2}a_T
\end{bmatrix} \begin{bmatrix}
 0.912 & 0 & 0 \\
 0 & 1.066 & 0 \\
 0 & 0 & 1.02
\end{bmatrix}
\]

(3)
plane strain B':

$$B' = B + e = \begin{bmatrix} \eta_{11} & 0 & 0 \\ 0 & \eta_{22} & 0 \\ 0 & 0 & \eta_{33} \end{bmatrix} + \begin{bmatrix} \nu e_{33} & 0 & 0 \\ 0 & \nu e_{33} & 0 \\ 0 & 0 & -e_{33} \end{bmatrix} = \begin{bmatrix} \eta_{11} & 0 & 0 \\ 0 & \eta_{22} & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0.918 & 0 & 0 \\ 0 & 1.072 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ \(4\)

where ν is Poisson ratio (-0.3). Since the magnitude of shear deformation is small, the shape deformation P required for the $T \rightarrow O$ transformation is approximately equal to the invariant plane strain combined with a rigid-body rotation, i.e. $\Omega B'$. The Rotation matrix Ω is:

$$\Omega = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ \(5\)

where θ is the rotation angle about the [001] direction of the O phase with respect to the T phase.

A theoretical prediction of the habit (invariant strain) plane, rotation angle and orientation relationships between the T and O phases can be made in the manner shown in Fig. 5[6]. The effect of the invariant plane strain B' on a spherical crystal, viewed along the z-axis, is illustrated. The spherical crystal was deformed into an ellipsoid due to the strain B'. The planes OQ' and OP' are not distorted by the strain, yet they were rotated from their initial positions OQ and OP. To produce an unrotated as well as undistorted habit plane, a rotation about the z-axis has to be added to the invariant plane strain B' to return one of these planes to the initial position (OQ' to OQ for instance). Let Q be the point (x,y). The coordinates of Q' (x',y') can then be given by the matrix multiplication:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} 0.918 & 0 & 0 \\ 0 & 1.072 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$ \(6\)

whence, $x' = 0.918x$, $y' = 1.072y$. Since $OQ = OQ'$, or $x^2 + y^2 = (0.918x)^2 + (1.072y)^2$. Thus, $z_{Q'OY} = \tan^{-1}(x/y) = 44.2^\circ$. The habit (T/O interface) plane therefore makes an angle 44.2° with $(001)_T$, this is only 0.3° away from the $(223)_T$ plane $(223)_T \cap (001)_T = 43.9^\circ$. $z_{Q'OY} = \tan^{-1}(x'/y') = 39.9^\circ$, thus the rotation angle $\theta = 4.3^\circ$. This rotation makes the $(223)_T$ plane nearly parallel to $(340)_O$, $(223)_T \cap (340)_O = 0.4^\circ$. The predicted orientation relationships between the T and O phases are $(110)_T \parallel (001)_O$, and $(110)_T \parallel (010)_O = [001]_T \parallel [100]_O = 4.3^\circ$. These are in agreement with the experimental results shown above. Consequently, we conclude the shape deformation P for the T \rightarrow O transition is:

$$P = \Omega B' = \begin{bmatrix} 0.915 & 0.069 & 0 \\ -0.080 & 1.069 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ \(7\)

Summary

Structural relationships between the T and O phase have been studied, and our results are summarized as follows:

1. The T \rightarrow O transition can be explained by a shape deformation mechanism.
2. The T/O interface (habit) plane is near to $(223)_T$.
3. The orientation relationships between the T and O phases are $(110)_T \parallel (001)_O$, and $(110)_T \parallel (010)_O = [001]_T \parallel [100]_O = 4.3^\circ$.

Acknowledgments

This work was co-sponsored by the Defense Advanced Research Projects Agency, the National Aeronautics and Space Administration through Contract Number NAGW-1692, and GE Aircraft Engines through Contract Number MS-GE-5222-92. The authors thank E.S. Russell and D. Backman of GE Aircraft Engines, Lynn, MA for providing the material used in this investigation.

References

Fig. 1. (a) Bright-field (BF) image showing a typical microstructure observed in a sample after aging for 40 min at 650°C, Z (zone axis) = [110]_T[001]_O, (b) dark-field (DF) image showing the matrix of the T phase, (c) dark-field (DF) image showing the lath-like O phase, (d) a [110]_T stereographic projection showing the orientation of the T/O interface.
Fig. 2. A selected area diffraction pattern generated from the (T + O) two-phase region in Fig. 1(a), Z = [110]_T||[001]_O.

Fig. 3. (a) Dark-field (DF) image showing the formation of equiaxed O grains in a sample after aging for 2 h at 650 °C, (b) microdiffraction (MD) and CBED whole patterns of the <001>_O zone generated from a coarsened O phase.
Fig. 4. Schematic illustrations of (a) lattice correspondence between the T and O phases, (b) lattice deformation and (c) atomic shuffling during the T -> O transition. Only part of the T and O lattices were drawn in (c).

Fig. 5. An ellipsoid developed from a sphere of the T crystal by the invariant plane strain B'. The diagram is normal to $[110]_T$.