University of Virginia
The Rotunda at U.Va.
Graduate School of Arts and Sciences
General Information  |  Programs and Degress Offered  |  Admission Information  |  Financial Assistance  |  Graduate Academic Regulations  |  Requirements for Specific Graduate Degrees  |  Departments and Programs  |  Faculty
Course Descriptions

Department of Mathematics

Degree Requirements

Programs of Study The Department of Mathematics administers programs leading to the degree of Master of Arts, Master of Science, and Doctor of Philosophy. These programs provide diverse opportunities for advanced study and research in algebra, analysis, topology, and mathematical physics.

The Master of Arts and Master of Science degrees are normally completed within two years, though in some cases, these degrees can be completed in one calendar year (two semesters and a summer session). The M.A. and M.S. programs differ mainly in course requirements. The M.S. degree requires specific courses in algebra, analysis, and topology. In contrast, the course requirements for the M.A. degree are flexible and based on individual needs. The M.A. candidate has two options, one requiring an expository paper for a thesis, and the other substituting additional course work in place of a thesis.

The Doctor of Philosophy degree is normally completed within five years. Candidates for the Ph.D. must fulfill certain course requirements and examinations beyond the master's level. The most important addition is the Ph.D. dissertation, which is based on original research performed under the supervision of a faculty member.

All full-time graduate students are required, as part of their program, to gain teaching experience by assisting the instruction of undergraduate courses.

Master of Arts Degree

Course Requirements (a) Thesis option: 24 credits of courses approved by the graduate committee at the 500 level or above (some courses from other departments and thesis research can count towards the 24 credits). (b) Non-thesis option: 30 credits of courses at the 500 level or above (no reading or research courses), which must include MATH 531, 532 (or replacements from among 731, 732, 734) and MATH 551, 552 (or replacements from 751, 752), and cannot include more than 9 credits from other departments.

Thesis (option (a) only): The master's thesis is an expository paper written under the supervision of a faculty advisor.

Examinations A passing grade on the final master's exam (or both parts of the general examination); specific content of the exam should be agreed on by the student and the examiners well in advance. The candidate must be a registered student at the time of the exam, and must finish the degree requirements within three years of passing the exam.

Language Facility in reading mathematical literature in one foreign language (French, German, Russian, or a substitute acceptable to the department) as confirmed by an examination administered by a member of the department. Two years of undergraduate credit in one of the languages will meet this requirement.

Master of Science Degree

The requirements for the M.S. degree are the same as for the M.A. degree, except the program must include MATH 731, 734, MATH 751, 752, MATH 577 and a topology course at the 700 level. Higher level substitutes may be approved.

Doctor of Philosophy Degree

Course Requirements A student must do satisfactory work in two semesters of analysis (MATH 731, 734), algebra (MATH 751, 752), and topology (MATH 577 and a 700 level topology course), or the equivalent.

Examinations Passing grades on two general examinations, chosen from analysis, algebra, and topology, and satisfactory performance on the qualifying examination.

General Examinations The general exams are written exams which are set and graded by the graduate committee. They test whether the student has the inventiveness and command of basic material to pursue a Ph.D. degree, and are usually taken in the second year of graduate study.

Qualifying Examination The qualifying exam is an oral exam or presentation set by a committee (consisting of the student's major advisor and at least one other faculty member). It tests whether the student is ready to embark on dissertation work in a specific area and is usually taken during the third year. Acceptance as an advisee is conditional upon satisfactory performance on this exam.

Language Facility in reading mathematical literature in two languages (French, German, Russian, or a substitute acceptable to the department), as demonstrated by an exam administered by the department, in which students are required to translate passages from mathematical works in the given language.

Dissertation and Defense Written under the supervision of the major advisor, the Ph.D. dissertation must contain original contributions to the field of mathematics. The main results of the dissertation are presented at a public oral defense. A committee consisting of the major advisor and two other faculty members (one from within the department and one from outside) must approve the dissertation and defense in order for the dissertation to be considered accepted by the faculty.

Kerchof Hall
P.O. Box 400137
Charlottesville, VA 22904-4137
(434) 924-4919

Course Descriptions


MATH 501 - (3) (E)
The History of the Calculus

Prerequisite: MATH 231 and 351 or instructor permission.
Studies the evolution of the various mathematical ideas leading up to the development of the calculus in the seventeenth century, and how those ideas were perfected and extended by succeeding generations of mathematicians. Emphasizes primary source materials.

MATH 503 - (3) (O)
The History of Mathematics

Prerequisite: MATH 231 and 351 or instructor permission.
Studies the development of mathematics from classical antiquity through the end of the nineteenth century, focusing on the critical periods in the evolution of such areas as geometry, number theory, algebra, probability, and set theory. Emphasizes primary source materials.

MATH 506 - (3) (IR)

Prerequisite: MATH 132 and computer proficiency.
Studies abstract algorithms to solve mathematical problems and their implementation in a high-level language. Topics include sorting problems, recursive algorithms, and dynamic data structures.

MATH 510 - (3) (Y)
Mathematical Probability

Prerequisite: MATH 132 or equivalent, and graduate standing. Students may not receive credit for both MATH 310 and 510.
Studies the development and analysis of probability models through the basic concepts of sample spaces, random variables, probability distributions, expectations, and conditional probability. Additional topics include distributions of transformed variables, moment generating functions, and the central limit theorem.

MATH 511 - (3) (Y)
Stochastic Processes

Prerequisite: MATH 310 or instructor permission.
Topics in probability selected from Random walks, Markov processes, Brownian motion, Poisson processes, branching processes, stationary time series, linear filtering and prediction, queuing processes, and renewal theory.

MATH 512 - (3) (Y)
Mathematical Statistics

Prerequisite: MATH 510 or equivalent, and graduate standing
Studies methods of estimation, general concepts of hypothesis testing, linear models and estimation by least squares, categorical data, and nonparametric statistics.

MATH 514 - (3) (Y)
Mathematics of Derivative Securities

Prerequisite: MATH 231 or 122 or its equivalent, and a knowledge of probability and statistics. MATH 310 or its equivalent is recommended.
Topics include arbitrage arguments, valuation of futures, forwards and swaps, hedging, option-pricing theory, and sensitivity analysis.

MATH 517 - (3) (IR)
Actuarial Mathematics

Prerequisite: MATH 312 or 512 or instructor permission.
Covers the main topics required by students preparing for the examinations in actuarial statistics, set by the American Society of Actuaries. Topics include life tables, life insurance and annuities, survival distributions, net premiums and premium reserves, multiple life functions and decrement models, valuation of pension plans, insurance models, benefits, and dividends.

MATH 521 - (3) (Y)
Advanced Calculus and Applied Mathematics

Prerequisite: MATH 231, 325
Includes vector analysis, Green's, Stokes', divergence theorems, conservation of energy, and potential energy functions. Emphasizes physical interpretation, Sturm-Liouville problems and Fourier series, special functions, orthogonal polynomials, and Green's functions.

MATH 522 - (3) (Y)
Partial Differential Equations and Applied Mathematics

Prerequisite: MATH 521 (351 recommended)
Introduces partial differential equations, Fourier transforms. Includes separation of variables, boundary value problems, classification of partial differential equations in two variables, Laplace and Poisson equations, and heat and wave equations.

MATH 525 - (3) (IR)
Advanced Ordinary Differential Equations

Prerequisite: MATH 231, 325, 351 or instructor permission.
Studies the qualitative geometrical theory of ordinary differential equations. Includes basic well posedness; linear systems and periodic systems; stability theory; perturbation of linear systems; center manifold theorem; periodic solutions and Poincaré-Bendixson theory; Hopf bifurcation; introduction to chaotic dynamics; control theoretic questions; differential geometric methods.

MATH 526 - (3) (IR)
Partial Differential Equations

Prerequisite: MATH 231, 325 and 351 or instructor permission.
A theoretical introduction from a classical viewpoint. Includes harmonic and subharmonic functions; wave and heat equations; Cauchy-Kowalewski and Holmgren theorems; characteristics; and the Hamilton-Jacobi theory.

MATH 530 - (3) (IR)
Computer Methods in Numerical Analysis

Prerequisite: MATH 351, 430, and computer proficiency.
Studies underlying mathematical principles and the use of sophisticated software for spline interpolation, ordinary differential equations, nonlinear equations, optimization, and singular-value decomposition of a matrix.

MATH 531, 532 - (3) (Y)
Introduction to Real Analysis I, II

Prerequisite: MATH 231, 351.
Includes the basic topology of Euclidean spaces, continuity and differentiation of functions on Euclidean spaces, Riemann-Stieltjes integration, convergence of sequences and series of functions. Equicontinuous families of functions, Weierstrass' theorem, inverse function theorem and implicit function theorem, integration of differential forms, and Stokes' Theorem.

MATH 534 - (3) (Y)
Complex Variables With Applications

Prerequisite: MATH 231 and graduate standing.
Includes analytic functions, Cauchy formulas, power series, residue theorem, conformal mapping, and Laplace transforms.

MATH 551, 552 - (3) (Y)
Introduction to Abstract Algebra I,II

Prerequisite: MATH 351 or instructor permission.
Introduces algebraic systems, including groups, rings, fields, vector spaces and their general properties including subsystems, quotient systems, homomorphisms. Studies permutation groups, polynomial rings, groups and rings of matrices. May also include applications to linear algebra and number theory.

MATH 554 - (3) (Y)
Survey of Algebra

Prerequisite: MATH 132 or equivalent and graduate standing.
Surveys major topics of modern algebra such as groups, rings, and fields. Presents applications to geometry and number theory. Explores the rational, real, and complex number systems, and the algebra of polynomials.

MATH 555 - (3) (IR)
Algebraic Automata Theory

Prerequisite: MATH 351.
Introduces the theory of sequential machines, finite permutation groups and transformation semigroups. Includes examples from biological and electronic systems as well as computer science, the Krohn-Rhodes decomposition of a state machine, and Mealy machines.

MATH 570 - (3) (Y)
Introduction to Geometry

Prerequisite: MATH 231, 351 or instructor permission.
Selected topics from analytic, affine, projective, hyperbolic, and non-Euclidean geometry.

MATH 572 - (3) (IR)
Introduction to Differential Geometry

Prerequisite: MATH 231, 351 or instructor permission.
Studies the theory of curves and surfaces in Euclidean space and the theory of manifolds.

MATH 577 - (3) (Y)
General Topology

Prerequisite: MATH 231; corequisite: MATH 551 or the equivalent.
Topics include topological spaces and continuous functions; product and quotient topologies; compactness and connectedness; separation and metrization; and the fundamental group and covering spaces.

MATH 583 - (3) (SI)

Prerequisite: Instructor permission.
Presentation of selected topics in mathematics. Usually for DMP students.

MATH 596 - (3) (S)
Supervised Study in Mathematics

Prerequisite: Instructor permission and graduate standing.
A rigorous program of supervised study designed to expose the student to a particular area of mathematics. Regular homework assignments and scheduled examinations are required.

MATH 700 - (1-3) (Y)
Seminar on College Teaching

Prerequisite: Graduate standing in mathematics.
Discussion of issues related to the practice of teaching, pedagogical concerns in college level mathematics, and aspects of the responsibilities of a professional mathematician. Hours may not be used towards a Master's or Ph.D. degree.

MATH 731 - (4) (Y)
Real Analysis and Linear Spaces I

Prerequisite: MATH 531 or equivalent.
Introduces measure and integration theory.

MATH 732 - (3) (O)
Real Analysis and Linear Spaces II

Prerequisite: MATH 731, MATH 734 or equivalent.
Additional topics in measure theory. Banach and Hilbert spaces, and Fourier analysis.

MATH 734 - (4) (Y)
Complex Analysis I

Studies the fundamental theorems of analytic function theory.

MATH 735 - (3) (O)
Complex Analysis II

Prerequisite: MATH 734 or equivalent.
Studies the Riemann mapping theorem, meromorphic and entire functions, topics in analytic function theory.

MATH 736 - (3) (E)
Mathematical Theory of Probability

Prerequisite: MATH 731 or equivalent.
Rigorous introduction to probability, using techniques of measure theory. Includes limit theorems, martingales, and stochastic processes.

MATH 741 - (3) (Y)
Functional Analysis I

Prerequisite: MATH 734 and 731 or equivalent.
Studies the basic principles of linear analysis, including spectral theory of compact and self adjoint operators.

MATH 742 - (3) (E)
Functional Analysis II

Prerequisite: MATH 741 or equivalent.
Studies the spectral theory of unbounded operators, semigroups, and distribution theory.

MATH 745 - (3) (IR)
Introduction to Mathematical Physics

Prerequisite: MATH 531.
An introduction to classical mechanics, with topics in statistical and quantum mechanics, as time permits.

MATH 751, 752 - (4) (Y)
Algebra I, II

Prerequisite: MATH 551, 552 or equivalent.
Studies groups, rings, fields, modules, tensor products, and multilinear functions.

MATH 753 - (3) (Y)
Algebra III

Prerequisite: MATH 751, 752 or equivalent.
Studies the Wedderburn theory, commutative algebra, topics in advanced algebra.

MATH 760 - (3) (SI)
Homological Algebra

Studies modules, algebras; Ext and Tor; cohomology of groups and algebras; differential graded modules, algebras, coalgebras; spectral sequences; and homological dimension.

MATH 780 - (3) (Y)
Differential Topology

Prerequisite: MATH 531, 577 or the equivalent.
Studies the theory of smooth manifolds and functions; tangent bundles and vector fields; embeddings, immersions, and transversality.

MATH 781 - (3) (Y)
Algebraic Topology: Homology Theory

Prerequisite: MATH 577.
Topics include singular homology and cohomology; simplicial and CW-theory; cohomology ring; cap products and duality.

MATH 782 - (3) (Y)
Algebraic Topology: Homotopy Theory

Prerequisite: MATH 781.
Topics include fibrations and cofibrations; homotopy groups; cohomology operations; Eilenberg-MacLane spaces; obstruction theory and spectral sequences.

MATH 783 - (3) (Y)
Algebraic Topology: Fiber Bundles

Prerequisite: MATH 780.
Includes coordinate bundles; principal bundles and classifying spaces; vector bundles and characteristic classes; elementary K-theory.

MATH 825 - (3) (O)
Differential Equations

Topics in the theory of ordinary and partial differential equations.

MATH 830 - (3) (SI)
Topics in Function Theory

Topics in real and complex function theory.

MATH 831, 832 - (3) (Y)
Operator Theory I, II

Topics in the theory of operators on a Hilbert space and related areas of function theory.

MATH 836, 837 - (3) (SI)
Topics in Probability Theory and Stochastics Processes

Topics in probability, stochastic processes and ergodic theory.

MATH 840 - (3) (SI)
Harmonic Analysis

Studies Banach and C* algebras, topological vector spaces, locally compact groups, Fourier analysis.

MATH 845 - (3) (SI)
Topics in Mathematical Physics

Applies functional analysis to physical problems; scattering theory, statistical mechanics, and quantum field theory.

MATH 851 - (3) (SI)
Group Theory

Studies the basic structure theory of groups, especially finite groups.

MATH 852 - (3) (SI)
Representation Theory

Studies the foundations of representation and character theory of finite groups.

MATH 853 - (3) (SI)
Algebraic Combinatorics

Studies geometries, generating functions, partitions, and error-correcting codes and graphs using algebraic methods involving group theory, number theory, and linear algebra.

MATH 854 - (3) (SI)
Arithmetic Groups

Prerequisite: MATH 752.
General methods of analyzing groups viewed as discrete subgroups of real algebraic subgroups. Additional topics include the congruence subgroup problem.

MATH 855 - (3) (SI)
Theory of Algebras

Studies the basic structure theory of associative or nonassociative algebras.

MATH 860 - (3) (SI)
Commutative Algebra

The foundations of commutative algebra, algebraic number theory, or algebraic geometry.

MATH 862 - (3) (SI)
Algebraic Geometry

Studies the foundations of algebraic geometry.

MATH 865 - (3) (SI)
Algebraic K-Theory

Includes projective class groups and Whitehead groups; Milnor's K2 and symbols; higher K-theory and finite fields.

MATH 870 - (3) (SI)
Lie Groups

Studies basic results concerning Lie groups, Lie algebras, and the correspondence between them.

MATH 871 - (3) (SI)
Lie Algebras

Studies basic structure theory of Lie algebras.

MATH 872 - (3) (SI)
Differential Geometry

Studies differential geometry in the large; connections; Riemannian geometry; Gauss-Bonnet formula; and differential forms.

MATH 875 - (3) (SI)
Topology of Manifolds

Studies manifolds from the topological, piecewise-linear, or smooth point of view; topics selected from embeddings, smoothing theory, Morse theory, index theory, and s-cobordism.

MATH 880 - (3) (SI)
Generalized Cohomology Theory

Topics include the axiomatic generalized cohomology theory; representability and spectra; spectra and ring spectra; orientability of bundles in generalized cohomology theory; Adams spectral sequence, and stable homotopy.

MATH 883 - (3) (SI)
Cobordism and K-Theory

Studies classical cobordism theories; Pontryagin-Thom construction; bordism and cobordism of spaces; K-theory and Bott periodicity; formal groups, and cobordism.

MATH 885 - (3) (SI)
Topics in Algebraic Topology

Selected advanced topics in algebraic topology.

MATH 888 - (3) (SI)
Transformation Groups

Studies groups of transformations operating on a space; properties of fixed point sets, orbit spaces; and local and global invariants.

MATH 896 - (3-12) (Y)

MATH 897 - (3-12) (Y)
Non-Topical Research, Preparation for Research

For master's research, taken before a thesis director has been selected.

MATH 898 - (3-12) (Y)
Non-Topical Research

For master's thesis, taken under the supervision of a thesis director.

MATH 925 - (3) (Y)
Differential Equations and Dynamical Systems Seminar

MATH 931 - (3) (Y)
Operator Theory Seminar

MATH 936 - (3) (Y)
Probability Seminar

MATH 941 - (3) (Y)
Analysis Seminar

MATH 945 - (3) (Y)
Mathematical Physics Seminar

MATH 950 - (3) (Y)
Algebra Seminar

MATH 952 - (3) (IR)
Coding Theory Seminar

MATH 980 - (3) (Y)
Topology Seminar

MATH 996 - (3-9) (Y)
Independent Research

MATH 997 - (3-12) (Y)
Non-Topical Research, Preparation for Doctoral Research

For doctoral research, taken before a dissertation director has been selected.

MATH 999 - (3-12) (Y)
Non-Topical Research

For doctoral dissertation, taken under the supervision of a dissertation director.

The Mathematics Colloquium is held weekly, the sessions being devoted to research activities of students and faculty members, and to reports by visiting mathematicians on current work of interest.

Graduate Record Home  |  Graduate School of Arts & Sciences Home