Final Report

Risk-Based Hurricane Recovery of Highway Signs, Signals and Lights

prepared by
Center for Risk Management of Engineering Systems and
Virginia Transportation Research Council
University of Virginia

(The opinions, findings, and conclusions expressed in this report are those of the authors and not necessarily those of the sponsoring agency)

Contract Research by
Virginia Transportation Research Council

Virginia Transportation Research Council
(A Cooperative Organization Sponsored Jointly by the
Virginia Department of Transportation and
the University of Virginia)

Charlottesville, Virginia

Draft September 1999
NOTICE

The project that is the subject of this report was done under contract for the Virginia Department of Transportation, Virginia Transportation Research Council. The opinions and conclusions expressed or implied are those of the contractors, and although they have been accepted as appropriate by the project monitors, they are not necessarily those of the Virginia Transportation Research Council or the Virginia Department of Transportation.

Each contract report is peer reviewed and accepted for publication by the Research Council staff with expertise in related technical areas. Final editing and proofreading of the report are performed by the contractor.

Copyright 1999, Virginia Department of Transportation
PROJECT TEAM

Virginia Department of Transportation
 Travis Bridewell
 Lynwood Butner
 Mac Clarke
 Perry Cogburn
 Jon DuFresne
 Stephany Hanshaw
 Steve Mondul
 Bob Rasmussen
 Gerald Venable

Virginia Transportation Research Council
 Wayne S. Ferguson
 Jack D. Jernigan

Center for Risk Management of Engineering Systems
 Professor James H. Lambert
 Professor Yacov Y. Haimes
 Claudia Handal, Graduate Student
 Jason Eshler, Technical Editor
 Heather Chua
 Jason D. Cole
 Pete M. Indelicato
 Faisal R. Khan
 Lance W. McGee
 Richie Moutoux
 Rebecca Selig
 Joshua Tsang
TABLE OF CONTENTS

Project Team iii
Table of Contents iv
Tables and Figures vii

Executive Summary 1
 Introduction 1
 Part 1. Evaluation of Upgrading of Equipment 1
 Part 2. Inventory 5
 Part 3. Priority Setting 8
 Part 4. Use of Forecasting 12
 Recommendations 15

Introduction 16
 Overview of Report 16
 Normal Operations at VDOT 17
 Sign Production 17
 Temporary Replacement 18
 Estimating Demand 18
 Outsourcing 19
 Ordering 19
 Sign Poles, Cantilevers and Span Structures 19
 Signals and Roadway Lighting 20

Review of Relevant Resources 21
 Introduction 21
 Sources for the Project in General 21
 Commonwealth of Virginia Emergency Operations Plan: Transportation Plan 21
 Teleconference with Perry Cogburn, October 16, 1998 21
 Teleconference and Electronic Communication with Travis A. Bridewell, District Traffic Engineer, VDOT 21
 Hurricane Diana, North Carolina, September 10-14, 1984 23
 Manual of Traffic Signs 24
 Hurricane Damage Assessment for Major Structures in Hampton Roads 24
 Standard Specifications for Structural Supports for Highway Signs, Luminaries and Traffic Signals 25
 A Guide to Standardized Highway Lighting Pole Hardware 25
 A Guide to Small Sign Support Hardware 25
 A Computer System for Evaluating and Predicting Hurricane Impact on Forest 26
 Purchasing, Inventory and Management System (PIMS) 26
 South Regional Emergency Management Assistance Compact (SREMAC) 27
 Teleconference with Chandra Clayton, VDOT Traffic Engineer Division 27
 Hurricane Preparedness Manual 27
 Guidance Manual 28
 Disaster Field Manual Instructions 28
 Hampton Roads Region: Hurricane Evacuation Traffic Control Plan 28
 Maps 29

Upgrading 29
 Introduction 29
 Upgrading Methods 29
Signs 29
Traffic signals 30
Lights 30
Model Development 31
Process for Model Development and Analysis 31
Modeling Assumptions 31
Defining the Model 32
Upgrading Alternatives 36
Calculating Damage for Alternatives 38
Determining Cost of Upgrading 39
Method for Estimating Cost of Upgrading 39
Calculating Annual Upgrading Cost 41
Trade-off Analyses 41
Upgrading Alternatives Comparison Tool 45
Upgrading Equipment on Important Highways 62

Inventory 48

Introduction 48
Statement of Activities 50
Determine Set of Equipment under Consideration 51
Approximate Quantities of Equipment on Roadways 52
Define a List of Possible Inventory Policies 53
Determine Cost of Spares 53
Determine the Cost of Replacing Equipment after Spares have been Depleted 56
Conduct a Trade-off Analysis 58
Consider Opportunity Loss 59
Calculate the Recovery time 59
Design of Automated Spreadsheet 64
“Data” Worksheet 64
“Alternatives” Worksheet 70
“Pre-Hurricane Cost of Spares” worksheet 73
“Post-Hurricane Cost of Recovery” Worksheet 75
Further Considerations 81
Alternatives Involving Upgrading 81
Alternatives Involving Temporary Replacement 82

Priority Setting 83

Introduction 83
Activities 86
Creating the Map 87
Identify Road Segments and Intersections 87
Identify Critical Facilities 89
Hierarchical Organization of Suffolk District 91
Prioritization 92
Connectivity 93
Recommended Method 93
Spreadsheets 95
Intersection Spreadsheet 95
Use of Forecasting for Reserves of Vulnerable Equipment

- Introduction 122
- Problem Definition 123
- Overview: Use of Forecasting 130
- Technical Background 130
 - Introduction 130
 - VDOT Inventory and Production Practices 131
 - Seasonal Hurricane Forecasts 135
 - Influence Diagrams and Decision Trees 138
 - Influence Diagrams 139
 - Decision Trees 140
- Modeling Hurricane Impacts 141
 - Introduction 141
 - Potential Damage 141
 - Decision Tree Attributes 149
 - Recovery Time and Recovery Cost 150
 - Pre-Hurricane Preparation Cost 163
- Summary 164
- Sequential Decision Making By Highway Agency 165
 - Introduction 165
 - Assumptions and Data 165
 - Hurricane Decision Model: Planning for Operation 167
 - Decision Tree for Planning for Operation 167
 - Calculations and Results 170
 - Conclusions 188

Recommendations and Conclusions 190

- Summary of Accomplishments 190
- Recommendations 192

References 176
TABLES AND FIGURES

Figure ES-1 Main Sections of the Final Report
Figure ES-2. Normal Distributions of Damage
Figure ES-3. Process for Modeling and Deciding among Upgrading Alternatives for Lights, Signs, and Signals
Figure ES-3. Trade-offs between Upgrading Cost and Replacement Cost for Cantilever Signs
Figure ES-4. Process for Modeling and Deciding among Upgrading Alternatives for Lights, Signs, and Signals
Figure ES-5 Activities for the Assessment of Inventory Policies
Figure ES-6. Pre-Hurricane Costs vs. Post-Hurricane Costs for Spares and Alternatives
Figure ES-7. Sample Map of the Suffolk District
Figure ES-8. Critical Facilities Map
Figure ES-9. Breakdown of Critical Facilities
Figure ES-10. Flow Chart of Activities Needed to Complete Priority-Setting Alternatives.
Figure ES-11: Sequential Decision Making Model, ‘Planning for Operation’
Figure ES-12. Pre-Hurricane Preparation Cost ($) Versus Recovery Cost ($) for Virginia
Figure 1.1 Main Subsections of the Final Report
Figure 3.1. Process for Modeling and Deciding Among Upgrading Alternatives for Lights, Signs, and Signals
Figure 3.2. Hurricane Scenarios: Probability Density Functions of Wind Speeds for the Five Hurricane Categories
Figure 3.3. Trade-offs between Upgrading Cost and Percentage of Installed Shoulder-Mounted Signs Damaged
Figure 3.4. Trade-offs between Upgrading Cost and Replacement Cost for Cantilever Signs
Figure 3.5. Trade-offs between Upgrading Cost and Replacement Cost for Traffic Signal Systems
Figure 3.6. “Welcome Page” Worksheet
Figure 3.7. “Index” Worksheet
Figure 3.8. “Getting Started” Worksheet
Figure 3.9. “Assumptions” Worksheet
Figure 3.10. “Upgrading Alternatives” Worksheet
Figure 3.11. “Damage” Worksheet
Figure 3.12. “Trade-off Help” Worksheet
Figure 3.13 “Trade-offs – All Equipment Types” Worksheet
Figure 3.14. Trade-off between Upgrading Cost and Percentage of Installed Shoulder-mounted Signs Damaged
Figure 3.15. Trade-offs between Upgrading Cost and Replacement Cost for Shoulder-mounted Signs
Figure 3.16. Trade-off between Upgrading Cost and Percentage of Installed Cantilever Signs Damaged
Figure 3.17. Trade-off between Upgrading Cost and Percentage of Installed Two Pole Span Signs Damaged
Figure 3.18. Trade-offs between Upgrading Cost and Replacement Cost for Cantilever Signs
Figure 3.19. Trade-offs between Upgrading Cost and Replacement Cost for Two Pole Span Signs
Figure 3.20. “Hurricane Scenario Definition” Worksheet.
Figure 3.21. “Upgrading Levels” Worksheet
Figure 3.22. “Cost Assumptions” Worksheet
Figure 3.23. “Cost of Upgrading Levels” Worksheet
Figure 4.1. Activities for the Assessment of Inventory Policies
Figure 4.2. Cost of Post-Hurricane Replacement Flow Diagram
Figure 4.3. Pre-Hurricane Costs vs. Post-Hurricane Costs
Figure 4.4. Investment vs. Recovery time
Figure 4.5. Screen Shot of Data Worksheet
Figure 4.6. Screen Shot of Alternatives Interface
Figure 4.7. Screen Shot of Cost Trade-off Output
Figure 5.1. Classification of Critical Facilities to Aid in Setting Recovery Priority
Figure 5.2. Flow Chart of Activities Needed to Complete Priority-Setting Alternatives.
Figure 5.3. Suffolk Area Map
Figure 5.4. Critical Facilities Map
Figure 5.5. Hierarchical Structure of Grids Comprising the Suffolk District.
Figure 5.6. Prioritization for Sample Network
Figure 5.7. Map of sample recovery area
Figure 6.1.1. Suffolk County Hurricane Landfall from 1900-1996 (Landsea, 1999)
Figure 6.1.2. Historical Data of Monthly Hurricane Landfalls from 1885-1996 (FEMA, 1999)
Figure 6.2.1. Economic Order Quantity (EOQ) Inventory Levels (Schroeder, 1993)
Figure 6.2.2. Lot Size versus Annual Cost. Helps Determine the Minimum Cost and the Economic Order Quantity (EOQ) (Schroeder, 1993)
Figure 6.2.3. August Prediction of Total Named Storms Versus the Number of Actually Observed Versus Long-Term Climatological Mean (R = 0.85) for Period 1984-1998 (Gray and Landsea, 1999)
Figure 6.2.4. August Prediction of Total Hurricanes Versus the Number of Actually Observed Versus Long Term Climatological Mean (R = 0.65) For Period 1984-1998 (Gray and Landsea, 1999)
Figure 6.2.5. Location of the 11 Coastal Regions for which Separate Probabilistic hurricane forecasts are Made (Gray and Landsea, 1999)
Figure 6.2.6. Illustration of the Different Components of an Influence Diagram. (Golub, 1997)
Figure 6.2.7. Illustration of the Different Components of a Decision Tree (Haimes, 1998)
Figure 6.3.1. Curve Illustrating 5th Percentile (X_5) and the 90th Percentile (X_{90})
Figure 6.3.2. Probability Density Functions of Wind Speed for the Five Hurricane Categories and Tropical Storms.
Figure 6.3.3. Diagram of Hurricane Recovery Procedures for Repairing Damaged Highway Signs, Signals and Lights.
Figure 6.3.4. Flow Diagram of Production and Installation of Damaged Highway Signs, Signals and Lights.
Figure 6.3.5. Simplified Diagram of Hurricane Recovery Procedures for Repairing Damaged Highway Signs, Signals and Lights.
Figure 6.3.6. Expected Recovery Time (weeks) Versus Signs Damaged (signs)
Figure 6.3.7. Expected Recovery Cost ($) Versus Signs Damaged (signs)
Figure 6.3.8. Recovery Time (weeks) for all Three Paths in Figure 6.3.5
Figure 6.3.9. Recovery Cost ($) for all Three Paths in Figure 6.3.3
Figure 6.3.10. Time to Install Damaged Signs (weeks) versus Number of Crews (crews)
Figure 6.4.1. Influence Diagram for the Decision Model
Figure 6.4.2. Sequential Decision Making Model, Planning for Operation
Figure 6.4.3. Diagram of Stage 2 Decision of the Decision Model
Figure 6.4.4. Pre-Hurricane Preparation Cost ($) Versus Recovery Time (weeks) for Virginia
Figure 6.4.5. Pre-Hurricane Preparation Cost ($) Versus Recovery Cost ($) for Virginia
Figure 6.4.6. Pre-Hurricane Preparation Cost ($) Versus Recovery Time (weeks) for Virginia Assigning 70% of Damaged Signs to be Produced and Installed by VDOT and the Remaining Signs to Contractors (Solid Line Denotes Pareto-Optimal Policies)
Figure 6.4.7. Pre-Hurricane Preparation Cost ($) Versus Recovery Cost ($) for Virginia Assigning 70% of Damaged Signs to be Produced and Installed by VDOT and the Remaining Signs to Contractors (Solid Line Denotes Pareto Optimal Policies)
Figure 6.4.8. Pre-Hurricane Preparation Cost ($) Versus Recovery Time (weeks) for Florida (Solid Line Indicates Pareto Optimal Policies)
Figure 6.4.9. Pre-Hurricane Preparation Cost ($) Versus Recovery Cost ($) for Florida (Solid Line Indicates Pareto Optimal Policies)

Table 2.1. Temporary and Permanent Replacement Costs for Signs and Signals in Virginia (Bridewell 1998).
Table 2.2. Expected Extent of Equipment Damage for different categories of hurricanes (VDOT, 1997c)
Table 3.1. Hurricane Wind Speed by Category (VDOT, 1996)
Table 3.2. Hurricane Scenario Definitions
Table 3.3. Mean and Standard Deviation for the Normal Distribution of Each Hurricane Category
Table 3.4. Ultimate Wind Velocities of Traffic Equipment (VDOT, 1997c)
Table 3.5. Upgrading Levels
Table 3.6. Sample Alternative
Table 3.7. Equipment Densities
Table 3.8. Assumed amounts of equipment installed in the Suffolk District
Table 3.9. Additional Percentage of In-place Cost Due to Upgrading
Table 3.10. Description of Table of Percentiles and Parameters in “Hurricane Scenario Definitions” Worksheet
Table 4.1. Saffir-Simpson Scale (VDOT, 1997a)
Table 4.2. Categorization of Damageable Equipment Under Consideration
Table 4.3. Purchase Cost of Cantilevers, Span Mounts, Signals, and Roadway Lighting. The Data was Obtained from Comments by David Williams, BLC Construction, Inc. (1999)
Table 4.4. Purchase Cost of Signs from a VDOT Sign Shop. The Data was Obtained from the Purchasing and Inventory Management Report, (VDOT, 1998)
Table 4.5a. Time to Manufacture and Deliver Equipment. Data was Taken from Comments by David Williams, BCL Construction, Inc. (1999)
Table 4.5b. Time to Install Equipment. Data was Taken from Comments by Sylvia Taylor, President, Baldwin Line Constr. Of MD, Inc. (1999)
Table 4.6. Data Spreadsheet for Spares/Reserves
Table 4.7. Data Spreadsheet Continued
Table 4.8a. Column Descriptions for the Data Worksheet
Table 4.8b. Column Descriptions for Data Worksheet Continued
Table 4.9 Alternatives Spreadsheet
Table 4.10. Column Descriptions of the Alternatives Worksheet
Table 4.11. Pre-Hurricane Costs Spreadsheet
Table 4.12. Column Descriptions for the Pre-Hurricane Costs of Spares Worksheet
Table 4.13. Post-Hurricane Cost Spreadsheet (Equipment Damage)
Table 4.14. Post-Hurricane Spreadsheet Continued (Shortage or Surplus)
Table 4.15. Post-Hurricane Costs Continued (Cost of Recovery)
Table 4.16. Column Descriptions for Post-Hurricane Cost of Recovery Worksheet
Table 4.17. Sources for the Data Used in the Spreadsheets
Table 5.1. Critical Facilities by Locality
Table 5.2a. A Description of all the Attributes in the Intersection Spreadsheet.
Table 5.2b. A Description of all the Attributes in the Intersection Spreadsheet con’t
Table 5.3. Sample of the Intersection Spreadsheet
Table 5.4. Road Segment Spreadsheet. The road segment spreadsheet shows which intersections (S1:S8) comprise the road segments
Table 5.5. First Step in Ordering of Intersections
Table 5.6. Second Step in Ordering of Intersections
Table 5.7. Third Step in Ordering the Intersections
Table 5.8. Sample of road segment spreadsheet
Table 5.9. Sample of intersection spreadsheet
Table 6.1.1. Potential Hurricane Damage Classification (Landsea, 1999)
Table 6.1.3. U.S. Mainland Hurricane Strikes by States, 1900-1996 (NHC, 1999)
Table 6.1.4. Major Hurricane Direct Hits on Mainland U.S. Coastline and for Individual States, 1900-1996 by Month (NHC, 1999)
Table 6.1.5. Damage Caused to Traffic-Control Equipment by Hurricane Andrew to County No. 6. Miami County, Florida
Table 6.2.1. Climatological Predictors Used in Forecasting Seasonal Hurricanes (Gray and Landsea, 1999)
Table 6.2.2. Example of Tropical Storm Forecast of 1999 Hurricane Season. (Gray and Landsea, 1999)
Table 6.2.3. Example of Probability Forecast of 1999 Hurricane Season. (Gray and Landsea, 1999)
Table 6.3.1. Saffir-Simpson Scale, Hurricane Wind Speed by Category (Cole, 1998).
Table 6.3.2. Hurricane Scenario Definitions.
Table 6.3.3. Mean and Standard Deviation for the Normal Distribution of each Hurricane Category
Table 6.3.4. Ultimate Wind Velocities of Traffic Equipment (VDOT, 1997)
Table 6.3.5. Percentage of Damage to Ground Mounted Signs Design, Standard of 86 Mph., for every Category of Hurricane (%)
Table 6.3.6. Diagram Tasks and Predecessors for Hurricane Recovery.
Table 6.3.7. Average Densities of Signs, Signals and Lights in Virginia (Bridewell, 1998)
Table 6.3.8. Number of Signs by Type in Suffolk District
Table 6.3.9. Summary of Data and Assumptions Used in the Calculations for the Recovery Time and Recovery Cost for Ground Mounted Signs 30”X 30”
Table 6.3.10. Sample Data for Recovery Time and Recovery Cost Obtained from the Calculations Derived from Figure 6.3.3.
Table 6.4.1. Summary of Administrative and Operational Data Used in the Example for Decision Models
Table 6.4.2. Seasonal Forecast Probabilities
Table 6.4.3. Sample Data from Table 6.1.3, Detailing the Number of Each Type of Hurricanes for Virginia and Florida from 1900 to 1996. (NHC, 1999)
Table 6.4.4. Summary Data from Calculations of the Probabilities that a Storm would Strike Given a High or Low Year for Virginia and Florida Example
Table 6.4.5. Summary of Probability Results Used in Decision Model for Virginia and Florida Examples (Storm Severity Probabilities)
Table 6.4.6. Summary of Decision Model Data for Decision Model No. 1, Planning for Operation
Table 6.4.7. Calculations and Results of Expected Values (Pre-Hurricane Preparation Cost, Recovery Time and Recovery Cost) at Stage 2 in the Decision Model
Table 6.4.8. Abstract from Table 6.4.7 to Show Branch Comparison to Determine Pareto Optimal Solutions
Table 6.4.9. Initial Calculations at Stage 1 to Proceed with the Combinations
Table 6.4.10. Combination Calculations for Pre-Hurricane Preparation Cost, Recovery Time and Recovery Cost at Stage 1.
Table 7.1. Policy Comparison for Upgrading Overhead Signs
Table 7.2. Policy Comparison for Spares and Reserves for Ground Signs
EXECUTIVE SUMMARY

Introduction

Hurricanes along the East Coast of the United States are very destructive. A storm becomes a hurricane when it demonstrates a rotary circulation and reaches a constant wind speed of 74 miles per hour. The strength of its winds can cause considerable damage and they range in categories from I to V, with I being the weakest and V being the strongest. Each category of hurricane has the potential to cause different amounts of damage to the Suffolk District of Virginia. Hurricane force winds can result in damage to highways, which includes destruction of highway signs, lights and signals.

Impairment of traffic-control equipment reduces the ability to transport people, equipment, and resources needed for the restoration of infrastructure. Without signs to direct travelers and lights to illuminate roads, highways can be confusing and dangerous. Months or even years can pass before a locality can recover and return to its original state in terms of traffic control equipment. The faster the highway infrastructure can be recovered the sooner mobility in the Suffolk District can be restored. Furthermore, it can cost the state enormously to recover from a hurricane. Even though government provides federal aid through FEMA and FHWA for the recovery effort, these funds cannot be solicited until the state has documented efforts in disaster recovery planning. A systematic approach to repairing damaged roads after a hurricane must be established.

Potentially, after a hurricane hits the Suffolk District of Virginia, the road systems may be in complete disorder. There may be no systematic process to recover the signs, lights and signals on Virginia highways. The goal of this project is to improve the recovery of the road systems after a hurricane by assessing the risks, costs and benefits associated with upgrading equipment, managing spare equipment and priority setting for recovery efforts.

The report is divided into four main sections, each contributing to a hurricane recovery plan for the signs, lights and signals in the Suffolk District. The four sections are as shown in Figure ES-1:

<table>
<thead>
<tr>
<th>Hurricane Recovery of Highway Signs, Lights and Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgrading</td>
</tr>
</tbody>
</table>

Figure ES-1 Main Sections of the Final Report
Part 1. Evaluation of Upgrading of Equipment

The first section involves consideration of strengthening alternatives. To characterize the impact of hurricanes to equipment, a straightforward linear model was developed to assess the percentage of signs that will be damaged in each category hurricane. As shown in Figure ES-2.

Since hurricanes of different categories (I, II, III, IV, and V) have different maximum sustained wind speeds, there are different normal density functions for hurricanes of each category. Each of these functions is defined by a mean and standard deviation. To calculate these two unknown parameters, the values for two percentiles are needed. The percentiles chosen were the 5th and 90th. The 5th percentile is the wind speed for which 5% of the installed equipment experiences less than that speed. According to the assumptions, the 90th percentile is the maximum sustained wind speed of a hurricane and the 5th percentile is five miles per hour.

Figure ES-2. Normal Distributions of Damage
Figure ES-3 shows the step in modeling and developing a tool for deciding among upgrading options. This process includes graphical comparisons of options or alternatives. The first two steps in Figure ES-3 develop a model for characterizing the extent of damage to highway equipment for each category of hurricane. The amount of damage is greater in a more severe hurricane, and it is necessary to develop a way to calculate the damage expected in a hurricane. Each type of equipment has a different strength. There needs to be a model that predicts equipment damage in a hurricane of a particular category given the strength and the amount of each equipment type.

Steps three through six develop a way to evaluate different upgrading alternatives. The results of these steps help management to see clearly what the costs and expected reduction in damage are for each alternative, and choose an alternative that suits its needs and objectives.

1. Assumptions about fraction of equipment that experiences certain wind speeds.

2. Choose distribution of wind speeds. Assume two percentile points to define distribution.

3. List upgrading alternatives.

4. Data gathering of costs equipment classes, etc.

5. For each alternative, calculate damage by using distribution and knowledge of maximum wind speeds of equipment.

6. Graph trade-off charts: upgrading cost vs. % damaged, upgrading cost vs. replacement cost

Figure ES-3. Process for Modeling and Deciding among Upgrading Alternatives for Lights, Signs, and Signals
The first section of this report also suggests factors that need to be considered and data that can be gathered to model the costs of preparedness and recovery, including the cost of upgrading, degree of upgrade, lifetime of equipment, cost of maintenance, wind speed, and hurricane frequencies. Lastly, the section suggests a graphical representation of sign upgrading alternatives that compares the cost of various sign upgrades to the expected damage from a given category storm.

Figure ES-4. Trade-offs between Upgrading Cost and Replacement Cost for Cantilever Signs

Figure ES-4 demonstrates the trade between an up-front annual investment in upgrading the wind-speed standard of a given equipment and the potential replacement cost of damaged equipment following a storm event. The up-front investment can be likened to an insurance premium, while the cost in the aftermath depends on the level of storm that occurs (I to V). The four policies represented in the figure are the no-upgrade, increase current standards by 10, 20, and 40mph respectively, for cantilever signs. In the case considered in Figure ES-4, additional investment has little impact for the aftermath of the type I storm. It has relatively more impact for the occurrence of the type V storm (savings of about $2 million) when comparing 40mph upgrade with no upgrade (however at an annual cost of $8,000,000). On cost alone the investment is probably not justified; however, the upgrading of some smaller set of critical cantilever signs could nevertheless be justified for selected routes in the road network, if for example, the selected routes are needed for immediate repair, recovery, return of evacuated populations.
Part 2. Inventory

The second section develops a system of acquiring inventory needed for roadway equipment by assessing the cost and potential benefits of alternatives for spares of damageable equipment. The alternatives include using contractors to make and deliver signs or producing the signs in-house. The factors needed to compare these alternatives are the level of sign-material inventory, level of new signs inventory, VDOT costs (to make signs and keep in storage), contractor costs, implementation time, and external demands for sign materials. An initial step is to estimate the number of signs that are currently on the roads by counting the number of each sign type on two sample roadways. Using the extent of damage analysis developed in the first section, the number of signs damaged in each hurricane type is calculated. Using estimates for the cost of production per square foot of aluminum, the cost of aluminum lost in each category of storm is calculated. A fixed warehousing cost is incorporated with the model for a total cost of aluminum sign-material lost. Using a contractor’s estimate of the cost per square foot of signs purchased, the cost of contracting the replacement of the amount lost in each category of storm is also calculated. It is suggested to compare different inventory level policies based upon the costs of preparedness and the costs and the time to recovery in the aftermath.
The accomplishment of the objectives for the evaluation of policies for spares and reserves involves the completion of the activities shown in Figure ES-5.

Figure ES-5 Activities for the Assessment of Inventory Policies

- Current Situation
 - Determine set of equipment under consideration
 - Determine actual amount of equipment currently on roadways
 - Determine alternative policies for spares
 - Determine the pre-hurricane costs to obtain and store spares

- Cost
 - Determine cost of replacement after spares have been depleted (Cost Later)
 - Graph trade-off charts: cost of spares vs. cost of recovery after spares have been depleted
 - Calculate Time to Implement
 - Graph trade-off charts: cost of spares vs. recovery time
When the pre-hurricane cost of spares and the post-hurricane cost of recovery are calculated, the two can be compared for each alternative and hurricane type. The associated trade-offs can be graphically represented as shown in Figure ES-6.

![Graph showing pre-hurricane costs vs. post-hurricane costs for spares and alternatives.](image)

Figure ES-6. Pre-Hurricane Costs vs. Post-Hurricane Costs for Spares and Alternatives

Each horizontal line in Figure ES-6 represents an inventory alternative. Each policy will have the same pre-hurricane costs, but its post-hurricane costs will differ according to the hurricane category. The five curves on the graph represent the different hurricane categories. The graph shows how much it may cost later for the possible hurricane types if VDOT were to invest a certain amount of money into storing spares now. The graphical analysis is meant to allow the agency decision-makers to make at-a-glance comparisons of the costs and benefits of the available policies.
Part 3. Priority Setting

The third section develops a methodology for establishing priorities for the order of full recovery of road segments. The model that was developed in this section is based upon the accessibility of critical facilities from a partially recovered road network. The model establishes a ranking of the road segments for recovery that allows the quickest re-connection of critical facilities. The number of critical facilities that are accessed through that intersection determines the importance of an intersection (highway interchange). First a network of intersections and roads connecting the intersections under consideration is defined.

Figure ES-7 is a map of the Suffolk District. The hurricane recovery plan is currently applied to the Suffolk District of Virginia but can be adapted to the rest of the state.

The major critical facilities considered in the Suffolk District (only military bases, hospitals, fire/rescue stations, and others) are identified and added to the map in order to determine the number of critical facilities accessible by each intersection. A sample of the map of the critical facilities is shown in Figure ES-8.

A connectivity measurement is then calculated using a combinatorial formula. The ordering of intersections is determined by two methods that maximize the connectivity of critical facilities. Thus producing a method for priority setting when restoring road segments in the Suffolk District.
Figure ES-8. Critical Facilities Map
There are many clients (critical facilities) that are involved in priority-setting. Figure ES-9 shows how clients are divided into six different categories: Health, Safety, Education, Food, Alternative Transportation, and Government Operations.

Figure ES-9. Classification of Critical Facilities to Aid in Setting Recovery Priority
The tasks shown in Figure ES-10 are completed in order to implement the priority setting.

Create the map of the Suffolk District

Break Suffolk District into sections

Identify intersections on the map

Identify critical facilities on the map

Enter intersections and facilities into spreadsheet

Create road segment spreadsheet

Perform base score calculation

Perform connectivity score calculation

Rank intersections

Sensitivity analysis

Figure ES-10. Flow Chart of Activities Needed to Complete Priority-Setting Alternatives.
Part 4. Use of Forecasting

The fourth section, planning for operation using forecasts uses historical data to determine the potential impact of hurricanes on a given year. The historical data of land-falling hurricanes provided by the National Hurricane Center (NHC) provides key information on strike probabilities for a region. The model incorporates the probability that a given type of storm will be the worst to strike a region in either a high or low forecast season. The decision-maker is able to compare investment in reserves of the equipment with the potential times of recovery following a storm in a multi-objective framework.

To improve decisions for managing reserves, the agency should have the forecast and cost information. Long-term and short-term decision-making with regard to reserves involves considering numerous models and criteria. To what extent should the agency maintain its spares? What are appropriate production and storage capacities? There are various trade-offs that have to be considered. VDOT has to determine whether it should pay now (preparation cost) or pay later (cost to recover). Another trade-off that can be assessed in the decision model is the preparation cost versus the recovery time.

A decision tree gives ideas on how to plan for the long-term and the short-term, capturing the sequence of decisions. The sequential forecast model utilizes historical data to evaluate different policies by incorporating the probabilities of a type of storm (I, II, III, IV, or V) being the worst storm to strike a region given a high or low hurricane season. The model described in this section is called ‘planning for operation.’ ‘Planning for operation’ decisions are made on the basis of long climatological records.

Figure ES-11 illustrates the “Planning for Operation” decision model.
Figure ES-11: Sequential Decision-Making Model, “Planning for Operation”
Figure ES-12 illustrates a trade-off comparison of the preparation costs versus the post-hurricane costs of recovery. The results shown in Figure ES-12 were attained from the production and installation rates, potential damage, seasonal forecasts and the historical information provided for Virginia.

![Figure ES-12. Pre-Hurricane Preparation Cost ($) Versus Cost to Recover ($) for Virginia](image)

Trade-offs can be examined to establish the preferred policies. A comparison can be made of investing almost $50,000 in pre-hurricane preparation costs, and $34,200 in post-hurricane costs versus investing $25,000 in pre-hurricane costs and $36,000 in post-hurricane costs. The highway agency can determine whether to invest more initially, rather than spending more funds to recover later. Therefore, changes in production or installation capabilities such as the increasing the number of crews would decrease the time to recover which in turn would change the results attained in Figures ES-12.
Recommendations

The following are the main recommendations to the highway agency:

- Notice the problem: Hurricanes can cause region-wide damage to traffic equipment
- Consider four remedies:
 1. upgrading equipment
 2. keeping an inventory of spares and reserves of highway equipment on hand,
 3. priority setting of roads for recovery
 4. use of seasonal forecasts to determine the levels of reserve equipment
- Distinguish between short and long-term recovery efforts. Short-term efforts involve temporary replacements while long-term efforts have permanent replacements.
- Evaluate different upgrading or spares policies by assessing the cost before a hurricane strikes and the damage, cost, and recovery time after a hurricane.
- Adapt spares and reserves to hurricane-center and other seasonal forecasts.
- Perform impact analysis using the various storm categories
- Consider the trade-offs between investing in spares and/or upgrading, and the times and costs of recovery
- Adopt the models for estimating the costs and effectiveness of upgrading and spares policies
- Consider upgrading only of routes critical to a community’s well-being in a hurricane
- Use probability distributions of wind speeds for different categories of storms to model hurricane impact on equipment
- Consider critical facilities throughout the road network in setting priorities for recovery, using accessibility to the critical facilities as a measurement of the importance of restoring a damaged road
- Consider the following categories of critical facilities: health, safety, education, food, alternative transportation, and governmental operations
- Maintain a web site for support of recovery of signs, signals, and lights. This web site may be adapted in the future to evaluate and prepare for the damage caused by other disasters.