Final Report

Risk-Based Hurricane Recovery of Highway Signs, Signals and Lights

prepared by
Center for Risk Management of Engineering Systems and
Virginia Transportation Research Council
University of Virginia

(The opinions, findings, and conclusions expressed in this report are those of the authors and not necessarily those of the sponsoring agency)

Contract Research by
Virginia Transportation Research Council

Virginia Transportation Research Council
(A Cooperative Organization Sponsored Jointly by the
Virginia Department of Transportation and
the University of Virginia)

Charlottesville, Virginia

Draft September 1999
NOTICE

The project that is the subject of this report was done under contract for the Virginia Department of Transportation, Virginia Transportation Research Council. The opinions and conclusions expressed or implied are those of the contractors, and although they have been accepted as appropriate by the project monitors, they are not necessarily those of the Virginia Transportation Research Council or the Virginia Department of Transportation.

Each contract report is peer reviewed and accepted for publication by the Research Council staff with expertise in related technical areas. Final editing and proofreading of the report are performed by the contractor.

Copyright 1999, Virginia Department of Transportation
PROJECT TEAM

Virginia Department of Transportation
Travis Bridewell
Lynwood Butner
Mac Clarke
Perry Cogburn
Jon DuFresne
Stephany Hanshaw
Steve Mondul
Bob Rasmussen
Gerald Venable

Virginia Transportation Research Council
Wayne S. Ferguson
Jack D. Jernigan

Center for Risk Management of Engineering Systems
Professor James H. Lambert
Professor Yacov Y. Haimes
Claudia Handal, Graduate Student
Jason Eshler, Technical Editor
Heather Chua
Jason D. Cole
Pete M. Indelicato
Faisal R. Khan
Lance W. McGee
Richie Moutoux
Rebecca Selig
Joshua Tsang
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Team</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>Tables and Figures</td>
<td>vii</td>
</tr>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>Part 1. Evaluation of Upgrading of Equipment</td>
<td>1</td>
</tr>
<tr>
<td>Part 2. Inventory</td>
<td>5</td>
</tr>
<tr>
<td>Part 3. Priority Setting</td>
<td>8</td>
</tr>
<tr>
<td>Part 4. Use of Forecasting</td>
<td>12</td>
</tr>
<tr>
<td>Recommendations</td>
<td>15</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Overview of Report</td>
<td></td>
</tr>
<tr>
<td>Normal Operations at VDOT</td>
<td></td>
</tr>
<tr>
<td>Sign Production</td>
<td></td>
</tr>
<tr>
<td>Temporary Replacement</td>
<td></td>
</tr>
<tr>
<td>Estimating Demand</td>
<td></td>
</tr>
<tr>
<td>Outsourcing</td>
<td></td>
</tr>
<tr>
<td>Ordering</td>
<td></td>
</tr>
<tr>
<td>Sign Poles, Cantilevers and Span Structures</td>
<td></td>
</tr>
<tr>
<td>Signals and Roadway Lighting</td>
<td></td>
</tr>
<tr>
<td>Recommendations</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Overview of Report</td>
<td></td>
</tr>
<tr>
<td>Normal Operations at VDOT</td>
<td></td>
</tr>
<tr>
<td>Sign Production</td>
<td></td>
</tr>
<tr>
<td>Temporary Replacement</td>
<td></td>
</tr>
<tr>
<td>Estimating Demand</td>
<td></td>
</tr>
<tr>
<td>Outsourcing</td>
<td></td>
</tr>
<tr>
<td>Ordering</td>
<td></td>
</tr>
<tr>
<td>Sign Poles, Cantilevers and Span Structures</td>
<td></td>
</tr>
<tr>
<td>Signals and Roadway Lighting</td>
<td></td>
</tr>
<tr>
<td>Recommendations</td>
<td></td>
</tr>
<tr>
<td>Review of Relevant Resources</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Overview of Report</td>
<td></td>
</tr>
<tr>
<td>Normal Operations at VDOT</td>
<td></td>
</tr>
<tr>
<td>Sign Production</td>
<td></td>
</tr>
<tr>
<td>Temporary Replacement</td>
<td></td>
</tr>
<tr>
<td>Estimating Demand</td>
<td></td>
</tr>
<tr>
<td>Outsourcing</td>
<td></td>
</tr>
<tr>
<td>Ordering</td>
<td></td>
</tr>
<tr>
<td>Sign Poles, Cantilevers and Span Structures</td>
<td></td>
</tr>
<tr>
<td>Signals and Roadway Lighting</td>
<td></td>
</tr>
<tr>
<td>Recommendations</td>
<td></td>
</tr>
<tr>
<td>Upgrading</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Upgrading Methods</td>
<td></td>
</tr>
<tr>
<td>Signs</td>
<td></td>
</tr>
<tr>
<td>Traffic signals</td>
<td></td>
</tr>
</tbody>
</table>

Error! Bookmark not defined.
Lights
Model Development
 Process for Model Development and Analysis
 Modeling Assumptions
 Defining the Model
 Upgrading Alternatives
 Calculating Damage for Alternatives
 Determining Cost of Upgrading
 Method for Estimating Cost of Upgrading
Calculating Annual Upgrading Cost
 Trade-off Analyses
Upgrading Alternatives Comparison Tool
 Upgrading Equipment on Important Highways

inventory
Introduction
Statement of Activities
 Determine Set of Equipment under Consideration
 Approximate Quantities of Equipment on Roadways
Define a List of Possible Inventory Policies
Determine Cost of Spares
 Determine the Cost of Replacing Equipment after Spares have been Depleted
Further Considerations
 Alternatives Involving Upgrading
 Alternatives Involving Temporary Replacement

Priority Setting
Introduction
Activities
 Creating the Map
 Identify Road Segments and Intersections
 Identify Critical Facilities
 Hierarchical Organization of Suffolk District
 Prioritization
 Connectivity
 Recommended Method
Spreadsheets
 “Data” Worksheet
 “Alternatives” Worksheet
 “Pre-Hurricane Cost of Spares” worksheet
 “Post-Hurricane Cost of Recovery” Worksheet
Further Considerations
 Alternatives Involving Upgrading
 Alternatives Involving Temporary Replacement
Sample of Results
Comparing Alternative Methods of Prioritization
Use of Forecasting for Reserves of Vulnerable Equipment
Introduction
Problem Definition
Overview: Use of Forecasting

Error! Bookmark not defined.

Error! Bookmark not defined.
Error! Bookmark not defined.
Error! Bookmark not defined.
Error! Bookmark not defined.
Error! Bookmark not defined.
Error! Bookmark not defined.
Error! Bookmark not defined.
Error! Bookmark not defined.
Error! Bookmark not defined.
Error! Bookmark not defined.
Error! Bookmark not defined.

Error! Bookmark not defined.
Technical Background 130
 Introduction 130
 VDOT Inventory and Production Practices 131
 Seasonal Hurricane Forecasts 135
Influence Diagrams and Decision Trees 138
 Influence Diagrams 139
 Decision Trees 140
Modeling Hurricane Impacts 141
 Introduction 141
 Potential Damage 141
 Decision Tree Attributes 149
 Recovery Time and Recovery Cost 150
 Pre-Hurricane Preparation Cost 163
 Summary 164
Sequential Decision Making By Highway Agency 165
 Introduction 165
 Assumptions and Data 165
 Hurricane Decision Model. Planning for Operation 167
 Decision Tree for Planning for Operation 167
 Calculations and Results 170
 Conclusions 188
Recommendations and Conclusions 190
 Summary of Accomplishments 190
 Recommendations 192
References
TABLES AND FIGURES

Figure ES-1 Main Sections of the Final Report
Figure ES-2. Normal Distributions of Damage
Figure ES-3. Process for Modeling and Deciding among Upgrading Alternatives for Lights, Signs, and Signals
Figure ES-3. Trade-offs between Upgrading Cost and Replacement Cost for Cantilever Signs
Figure ES-4. Process for Modeling and Deciding among Upgrading Alternatives for Lights, Signs, and Signals
Figure ES-5 Activities for the Assessment of Inventory Policies
Figure ES-6. Pre-Hurricane Costs vs. Post-Hurricane Costs for Spares and Alternatives
Figure ES-7. Sample Map of the Suffolk District
Figure ES-8. Critical Facilities Map
Figure ES-9. Breakdown of Critical Facilities
Figure ES-10. Flow Chart of Activities Needed to Complete Priority-Setting Alternatives.
Figure ES-11: Sequential Decision Making Model, ‘Planning for Operation’
Figure ES-12. Pre-Hurricane Preparation Cost ($) Versus Recovery Cost ($) for Virginia
Figure 1.1 Main Subsections of the Final Report
Figure 3.1. Process for Modeling and Deciding Among Upgrading Alternatives for Lights, Signs, and Signals
Figure 3.2. Hurricane Scenarios: Probability Density Functions of Wind Speeds for the Five Hurricane Categories
Figure 3.3. Trade-offs between Upgrading Cost and Percentage of Installed Shoulder-Mounted Signs Damaged
Figure 3.4. Trade-offs between Upgrading Cost and Replacement Cost for Cantilever Signs
Figure 3.5. Trade-offs between Upgrading Cost and Replacement Cost for Traffic Signal Systems
Figure 3.6. “Welcome Page” Worksheet
Figure 3.7. “Index” Worksheet
Figure 3.8. “Getting Started” Worksheet
Figure 3.9. “Assumptions” Worksheet
Figure 3.10. “Upgrading Alternatives” Worksheet
Figure 3.11. “Damage” Worksheet
Figure 3.12. “Trade-off Help” Worksheet
Figure 3.13 “Trade-offs – All Equipment Types” Worksheet
Figure 3.14. Trade-off between Upgrading Cost and Percentage of Installed Shoulder-mounted Signs Damaged
Figure 3.15. Trade-offs between Upgrading Cost and Replacement Cost for Shoulder-mounted Signs
Figure 3.16. Trade-off between Upgrading Cost and Percentage of Installed Two Pole Span Signs Damaged
Figure 3.17. Trade-offs between Upgrading Cost and Replacement Cost for Cantilever Signs
Figure 3.18. Trade-offs between Upgrading Cost and Replacement Cost for Cantilever Signs
Figure 3.19. Trade-offs between Upgrading Cost and Replacement Cost for Two Pole Span Signs
Figure 3.20. “Hurricane Scenario Definition” Worksheet.
Figure 3.21. “Upgrading Levels” Worksheet
Figure 3.22. “Cost Assumptions” Worksheet
Figure 3.23. “Cost of Upgrading Levels” Worksheet
Figure 4.1. Activities for the Assessment of Inventory Policies
Figure 4.2. Cost of Post-Hurricane Replacement Flow Diagram
Figure 4.3. Pre-Hurricane Costs vs. Post-Hurricane Costs
Figure 4.4. Investment vs. Recovery time
Figure 4.5. Screen Shot of Data Worksheet
Figure 4.6. Screen Shot of Alternatives Interface
Figure 4.7. Screen Shot of Cost Trade-off Output
Figure 5.1. Classification of Critical Facilities to Aid in Setting Recovery Priority
Figure 5.2. Flow Chart of Activities Needed to Complete Priority-Setting Alternatives.
Figure 5.3. Suffolk Area Map
Figure 5.4. Critical Facilities Map
Figure 5.5. Hierarchical Structure of Grids Comprising the Suffolk District.
Figure 5.6. Prioritization for Sample Network
Figure 5.7. Map of sample recovery area
Figure 6.1.1. Suffolk County Hurricane Landfall from 1900-1996 (Landsea, 1999)
Figure 6.1.2. Historical Data of Monthly Hurricane Landfalls from 1885-1996 (FEMA, 1999)
Figure 6.2.1. Economic Order Quantity (EOQ) Inventory Levels (Schroeder, 1993)
Figure 6.2.2. Lot Size versus Annual Cost. Helps Determine the Minimum Cost and the Economic Order Quantity (EOQ) (Schroeder, 1993)
Figure 6.2.3. August Prediction of Total Named Storms Versus the Number of Actually Observed Versus Long-Term Climatological Mean (R = 0.85) for Period 1984-1998 (Gray and Landsea, 1999)
Figure 6.2.4. August Prediction of Total Hurricanes Versus the Number of Actually Observed Versus Long Term Climatological Mean (R = 0.65) For Period 1984-1998 (Gray and Landsea, 1999)
Figure 6.2.5. Location of the 11 Coastal Regions for which Separate Probabilistic hurricane forecasts are Made (Gray and Landsea, 1999)
Figure 6.2.6. Illustration of the Different Components of an Influence Diagram. (Golub, 1997)
Figure 6.2.7. Illustration of the Different Components of a Decision Tree (Haimes, 1998)
Figure 6.3.1. Curve Illustrating 5th Percentile (X\textsubscript{5}) and the 90th Percentile (X\textsubscript{90})
Figure 6.3.2. Probability Density Functions of Wind Speed for the Five Hurricane Categories and Tropical Storms
Figure 6.3.3. Diagram of Hurricane Recovery Procedures for Repairing Damaged Highway Signs, Signals and Lights.
Figure 6.3.4. Flow Diagram of Production and Installation of Damaged Highway Signs, Signals and Lights
Figure 6.3.5. Simplified Diagram of Hurricane Recovery Procedures for Repairing Damaged Highway Signs, Signals and Lights.
Figure 6.3.6. Expected Recovery Time (weeks) Versus Signs Damaged (signs)
Figure 6.3.7. Expected Recovery Cost ($) Versus Signs Damaged (signs)
Figure 6.3.8. Recovery Time (weeks) for all Three Paths in Figure 6.3.5
Figure 6.3.9. Recovery Cost ($) for all Three Paths in Figure 6.3.3
Figure 6.3.10. Time to Install Damaged Signs (weeks) versus Number of Crews (crews)
Figure 6.4.1. Influence Diagram for the Decision Model
Figure 6.4.2. Sequential Decision Making Model, Planning for Operation
Figure 6.4.3. Diagram of Stage 2 Decision of the Decision Model
Figure 6.4.4. Pre-Hurricane Preparation Cost ($) Versus Recovery Time (weeks) for Virginia
Figure 6.4.5. Pre-Hurricane Preparation Cost ($) Versus Recovery Cost ($) for Virginia
Figure 6.4.6. Pre-Hurricane Preparation Cost ($) Versus Recovery Time (weeks) for Virginia Assigning 70% of Damaged Signs to be Produced and Installed by VDOT and the Remaining Signs to Contractors (Solid Line Denotes Pareto-Optimal Policies)
Figure 6.4.7. Pre-Hurricane Preparation Cost ($) Versus Recovery Cost ($) for Virginia Assigning 70% of Damaged Signs to be Produced and Installed by VDOT and the Remaining Signs to Contractors (Solid Line Denotes Pareto Optimal Policies)
Figure 6.4.8. Pre-Hurricane Preparation Cost ($) Versus Recovery Time (weeks) for Florida (Solid Line Indicates Pareto Optimal Policies)
Figure 6.4.9. Pre-Hurricane Preparation Cost ($) Versus Recovery Cost ($) for Florida (Solid Line Indicates Pareto Optimal Policies)

Table 2.1. Temporary and Permanent Replacement Costs for Signs and Signals in Virginia (Bridewell 1998).
Table 2.2. Expected Extent of Equipment Damage for different categories of hurricanes (VDOT, 1997c)
Table 3.1. Hurricane Wind Speed by Category (VDOT, 1996)
Table 3.2. Hurricane Scenario Definitions
Table 3.3. Mean and Standard Deviation for the Normal Distribution of Each Hurricane Category
Table 3.4. Ultimate Wind Velocities of Traffic Equipment (VDOT, 1997c)
Table 3.5. Upgrading Levels
Table 3.6. Sample Alternative
Table 3.7. Equipment Densities
Table 3.8. Assumed amounts of equipment installed in the Suffolk District
Table 3.9. Additional Percentage of In-place Cost Due to Upgrading
Table 3.10. Description of Table of Percentiles and Parameters in “Hurricane Scenario Definitions” Worksheet
Table 4.1. Saffir-Simpson Scale (VDOT, 1997a)
Table 4.2. Categorization of Damageable Equipment Under Consideration
Table 4.3. Purchase Cost of Cantilevers, Span Mounts, Signals, and Roadway Lighting. The Data was Obtained from Comments by David Williams, BLC Construction, Inc. (1999)
Table 4.4. Purchase Cost of Signs from a VDOT Sign Shop. The Data was Obtained from the Purchasing and Inventory Management Report, (VDOT, 1998)
Table 4.5a. Time to Manufacture and Deliver Equipment. Data was Taken from Comments by David Williams, BCL Construction, Inc. (1999)
Table 4.5b. Time to Install Equipment. Data was Taken from Comments by Sylvia Taylor, President, Baldwin Line Constr. Of MD, Inc. (1999)
Table 4.6. Data Spreadsheet for Spares/Reserves
Table 4.7. Data Spreadsheet Continued
Table 4.8a. Column Descriptions for the Data Worksheet
Table 4.8b. Column Descriptions for Data Worksheet Continued
Table 4.9 Alternatives Spreadsheet
Table 4.10. Column Descriptions of the Alternatives Worksheet
Table 4.11. Pre-Hurricane Costs Spreadsheet
Table 4.12. Column Descriptions for the Pre-Hurricane Costs of Spares Worksheet
Table 4.13. Post-Hurricane Cost Spreadsheet (Equipment Damage)
Table 4.14. Post-Hurricane Spreadsheet Continued (Shortage or Surplus)
Table 4.15. Post-Hurricane Costs Continued (Cost of Recovery)
Table 4.16. Column Descriptions for Post-Hurricane Cost of Recovery Worksheet
Table 4.17. Sources for the Data Used in the Spreadsheets
Table 5.1. Critical Facilities by Locality
Table 5.2a. A Description of all the Attributes in the Intersection Spreadsheet.
Table 5.2b. A Description of all the Attributes in the Intersection Spreadsheet con’t
Table 5.3. Sample of the Intersection Spreadsheet
Table 5.4. Road Segment Spreadsheet. The road segment spreadsheet shows which intersections (S1:S8) comprise the road segments
Table 5.5. First Step in Ordering of Intersections
Table 5.6. Second Step in Ordering of Intersections
Table 5.7. Third Step in Ordering the Intersections
Table 5.8. Sample of road segment spreadsheet
Table 5.9. Sample of intersection spreadsheet
Table 5.1. Potential Hurricane Damage Classification (Landsea, 1999)
Table 5.1.2. Median Damage Costs of U.S. Landfalling Tropical Storms and Hurricanes from 1925-1995 (Pielke and Landsea, 1998)
Table 5.1.3. U.S. Mainland Hurricane Strikes by States, 1900-1996 (NHC, 1999)
Table 5.1.4. Major Hurricane Direct Hits on Mainland U.S. Coastline and for Individual States, 1900-1996 by Month (NHC, 1999)
Table 5.1.5. Damage Caused to Traffic-Control Equipment by Hurricane Andrew to County No. 6. Miami County, Florida
Table 6.2.1. Climatological Predictors Used in Forecasting Seasonal Hurricanes (Gray and Landsea, 1999)
Table 6.2.2. Example of Tropical Storm Forecast of 1999 Hurricane Season. (Gray and Landsea, 1999)
Table 6.2.3. Example of Probability Forecast of 1999 Hurricane Season. (Gray and Landsea, 1999)
Table 6.3.1. Saffir-Simpson Scale, Hurricane Wind Speed by Category (Cole, 1998).
Table 6.3.2. Hurricane Scenario Definitions.
Table 6.3.3. Mean and Standard Deviation for the Normal Distribution of each Hurricane Category
Table 6.3.4. Ultimate Wind Velocities of Traffic Equipment (VDOT, 1997)
Table 6.3.5. Percentage of Damage to Ground Mounted Signs Design, Standard of 86 Mph., for every Category of Hurricane (%)
Table 6.3.6. Diagram Tasks and Predecessors for Hurricane Recovery.
Table 6.3.7. Average Densities of Signs, Signals and Lights in Virginia (Bridewell, 1998)
Table 6.3.8. Number of Signs by Type in Suffolk District
Table 6.3.9. Summary of Data and Assumptions Used in the Calculations for the Recovery Time and Recovery Cost for Ground Mounted Signs 30”X 30”
Table 6.3.10. Sample Data for Recovery Time and Recovery Cost Obtained from the Calculations Derived from Figure 6.3.3.
Table 6.4.1. Summary of Administrative and Operational Data Used in the Example for Decision Models
Table 6.4.2. Seasonal Forecast Probabilities
Table 6.4.3. Sample Data from Table 6.1.3, Detailing the Number of Each Type of Hurricanes for Virginia and Florida from 1900 to 1996. (NHC, 1999)
Table 6.4.4. Summary Data from Calculations of the Probabilities that a Storm would Strike Given a High or Low Year for Virginia and Florida Example
Table 6.4.5. Summary of Probability Results Used in Decision Model for Virginia and Florida Examples (Storm Severity Probabilities)
Table 6.4.6. Summary of Decision Model Data for Decision Model No. 1, Planning for Operation
Table 6.4.7. Calculations and Results of Expected Values (Pre-Hurricane Preparation Cost, Recovery Time and Recovery Cost) at Stage 2 in the Decision Model
Table 6.4.8. Abstract from Table 6.4.7 to Show Branch Comparison to Determine Pareto Optimal Solutions
Table 6.4.9. Initial Calculations at Stage 1 to Proceed with the Combinations
Table 6.4.10. Combination Calculations for Pre-Hurricane Preparation Cost, Recovery Time and Recovery Cost at Stage 1.
Table 7.1. Policy Comparison for Upgrading Overhead Signs
Table 7.2. Policy Comparison for Spares and Reserves for Ground Signs